PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1044.
Published online 2009 August 8. doi:  10.1107/S1600536809030050
PMCID: PMC2970089

catena-Poly[copper(II)-di-μ-dicyan­amido-μ-1,3-di-4-pyridylpropane]

Abstract

In the title compound, [Cu(C2N3)2(C13H14N2)]n, the CuII atom, located on an inversion centre, adopts a distorted octa­hedral coordination by six N atoms, two from 1,3-di-4-pyridylpropane and four from dicyanamide ligands, with significantly different Cu—N distances. The metal centres are linked in an unusual triple-bridged mode into chains parallel to [101].

Related literature

For the architectures and topologies of metal-organic compounds, see: Eddaoudi et al. (2001 [triangle]). For their potential applications, see: Zhang et al. (2007 [triangle]); Banerjee et al. (2008 [triangle]). For compounds constructed in single or double-bridged modes, see: Zhang et al. (2008 [triangle]); Lang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1044-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2N3)2(C13H14N2)]
  • M r = 393.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1044-efi1.jpg
  • a = 16.097 (3) Å
  • b = 10.163 (2) Å
  • c = 12.920 (3) Å
  • β = 123.10 (3)°
  • V = 1770.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.25 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Rigaku Saturn724+ diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.798, T max = 0.882
  • 4144 measured reflections
  • 1713 independent reflections
  • 1490 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.154
  • S = 1.09
  • 1713 reflections
  • 121 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030050/pv2188sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030050/pv2188Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Foundation of Jiangsu University (08JDG036).

supplementary crystallographic information

Comment

The design and syntheses of metal-organic compounds have attracted great attention in recent years because of not only their intriguing architectures and topologies (Eddaoudi et al., 2001) but also due to their potential applications (Banerjee et al., 2008; Zhang et al., 2007). The flexible bridging ligands can construct metal-organic frameworks with various structures. The tilte compound, (I), was constructed by two kinds of flexible bridging ligands through diffusion reactions of copper(II) nitrate trihydrate, sodium dicyanamide and 1,3-di-4-pyridylpropane which were self-assembled to form a one-dimensional neutral metal-organic compound. In this paper, the crystal structure of (I) is presented.

As illustrated in Fig. 1, Cu2+ adopts a distorted octahedral geometry, generated by six nitrogen atoms two from 1,3-di-4-pyridylpropane (bpp) and four from dicyanamide (dca) ligands, Interestingly, the distance Cu1—N2 ([2.388 (5) Å) is significantly longer than those of Cu1—N1 (2.027 (3) Å) and Cu1—N4 (2.031 (4) Å).

Two neighboring Cu atoms are linked by one bpp and two dca ligangs forming a one-dimensional neutral chain in a triple-bridged mode. Compared to single or double-bridged modes (Zhang et al., 2008; Lang et al., 2004), this triple-bridged mode is unfamiliar in coordination compounds.

Experimental

Cu(NO3)2.3H2O (96.6 mg, 0.4 mmol) was added to 2 ml H2O with thorough stirring for 5 minutes and filtered. The blue filtrate was carefully laid on the surface of a solution of bpp (99.1 mg, 0.5 mmol) and NaN(CN)2 (89.1 mg, 1 mmol) in 4 ml i-PrOH and 2 ml H2O. Blue block crystals were obtained after five days.

Refinement

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.2Ueq for methylene and pyridyl H atoms, the C—H bonds are 0.97 Å and 0.93 Å in methylene and pyridyl groups, respectively.

Figures

Fig. 1.
The molecular structure of the title compound, with atomic labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity.

Crystal data

[Cu(C2N3)2(C13H14N2)]F(000) = 804
Mr = 393.91Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3458 reflections
a = 16.097 (3) Åθ = 2.6–29.1°
b = 10.163 (2) ŵ = 1.25 mm1
c = 12.920 (3) ÅT = 293 K
β = 123.10 (3)°Block, blue
V = 1770.6 (6) Å30.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn724+ diffractometer1713 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
graphiteRint = 0.027
dtprofit.ref scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −19→15
Tmin = 0.798, Tmax = 0.882k = −12→12
4144 measured reflectionsl = −12→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.154w = 1/[σ2(Fo2) + (0.0663P)2 + 4.1353P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1713 reflectionsΔρmax = 0.42 e Å3
121 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (8)

Special details

Experimental. Yield: 82.1 mg in pure form, 52.1% based on Cu. Analysis calculated for C17H14CuN8: C 51.83, H 3.58, N 28.45%; found: C 51.72, H 3.45, N 28.61%. IR: ν, cm-1,2182 s, 1606 s, 1424 s, 809 s.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.25000.25000.00000.0533 (3)
N10.3080 (2)0.4314 (3)0.0637 (3)0.0568 (8)
N20.1117 (3)0.3051 (5)0.0129 (5)0.0969 (16)
N3−0.0582 (3)0.3715 (6)−0.1106 (4)0.1082 (19)
N40.3218 (3)0.1822 (4)0.1764 (4)0.0835 (13)
C10.50000.8653 (7)0.25000.166 (6)
H1A0.51170.92400.20010.199*0.50
H1B0.48830.92400.29990.199*0.50
C20.0327 (3)0.3341 (4)−0.0500 (4)0.0614 (11)
C40.3810 (3)0.1618 (4)0.2776 (4)0.0635 (11)
C50.3299 (4)0.6216 (5)0.1826 (5)0.0795 (14)
H50.32030.66240.23980.095*
C60.2971 (3)0.4963 (5)0.1450 (4)0.0680 (12)
H60.26530.45390.17780.082*
C70.3545 (3)0.4953 (5)0.0197 (4)0.0681 (12)
H70.36390.4520−0.03650.082*
C80.3770 (3)0.6876 (5)0.1364 (5)0.0771 (15)
C90.4068 (4)0.8298 (5)0.1660 (6)0.101 (2)
H9A0.38840.87230.08910.121*
H9B0.36550.86810.19150.121*
C30.3891 (4)0.6210 (5)0.0527 (5)0.0757 (13)
H30.42070.66150.01870.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0436 (4)0.0493 (5)0.0453 (5)−0.0036 (3)0.0103 (3)−0.0012 (3)
N10.0464 (17)0.0520 (18)0.0527 (19)−0.0028 (15)0.0146 (16)−0.0036 (16)
N20.056 (2)0.078 (3)0.097 (3)0.005 (2)0.004 (2)−0.013 (3)
N30.068 (3)0.161 (5)0.068 (3)0.028 (3)0.019 (2)−0.032 (3)
N40.060 (2)0.071 (3)0.068 (3)0.002 (2)0.002 (2)−0.004 (2)
C10.074 (5)0.040 (4)0.226 (12)0.000−0.019 (7)0.000
C20.058 (3)0.058 (2)0.049 (2)0.001 (2)0.017 (2)−0.001 (2)
C40.050 (2)0.061 (3)0.060 (3)−0.004 (2)0.018 (2)−0.001 (2)
C50.062 (3)0.071 (3)0.080 (3)−0.002 (2)0.023 (3)−0.026 (3)
C60.061 (2)0.069 (3)0.065 (3)−0.007 (2)0.028 (2)−0.013 (2)
C70.070 (3)0.063 (3)0.064 (3)−0.006 (2)0.031 (2)−0.005 (2)
C80.047 (2)0.049 (3)0.087 (3)0.000 (2)0.006 (2)−0.005 (3)
C90.071 (3)0.049 (3)0.120 (5)0.003 (2)0.011 (3)−0.014 (3)
C30.068 (3)0.058 (3)0.086 (3)−0.015 (2)0.033 (3)0.001 (3)

Geometric parameters (Å, °)

Cu1—N1i2.027 (3)C1—H1A0.9700
Cu1—N12.027 (3)C1—H1B0.9700
Cu1—N42.031 (4)C4—N3iv1.270 (6)
Cu1—N4i2.031 (4)C5—C61.363 (7)
Cu1—N22.388 (5)C5—C81.370 (8)
Cu1—N2i2.388 (5)C5—H50.9300
N1—C71.330 (6)C6—H60.9300
N1—C61.331 (5)C7—C31.366 (7)
N2—C21.112 (6)C7—H70.9300
N3—C4ii1.270 (6)C8—C31.376 (8)
N3—C21.283 (6)C8—C91.505 (7)
N4—C41.141 (6)C9—H9A0.9700
C1—C9iii1.335 (6)C9—H9B0.9700
C1—C91.335 (6)C3—H30.9300
N1i—Cu1—N1180.00 (8)C9—C1—H1B99.6
N1i—Cu1—N490.06 (16)H1A—C1—H1B104.1
N1—Cu1—N489.94 (16)N2—C2—N3172.9 (6)
N1i—Cu1—N4i89.94 (16)N4—C4—N3iv174.1 (6)
N1—Cu1—N4i90.06 (16)C6—C5—C8120.0 (5)
N4—Cu1—N4i180.0 (2)C6—C5—H5120.0
N1i—Cu1—N290.08 (16)C8—C5—H5120.0
N1—Cu1—N289.92 (16)N1—C6—C5123.6 (5)
N4—Cu1—N288.97 (19)N1—C6—H6118.2
N4i—Cu1—N291.03 (19)C5—C6—H6118.2
N1i—Cu1—N2i89.92 (16)N1—C7—C3123.5 (5)
N1—Cu1—N2i90.08 (16)N1—C7—H7118.2
N4—Cu1—N2i91.03 (19)C3—C7—H7118.2
N4i—Cu1—N2i88.97 (19)C5—C8—C3116.9 (4)
N2—Cu1—N2i180.0 (2)C5—C8—C9122.3 (5)
C7—N1—C6116.3 (4)C3—C8—C9120.7 (6)
C7—N1—Cu1120.8 (3)C1—C9—C8121.8 (5)
C6—N1—Cu1122.8 (3)C1—C9—H9A106.9
C2—N2—Cu1138.5 (5)C8—C9—H9A106.9
C4ii—N3—C2121.9 (5)C1—C9—H9B106.9
C4—N4—Cu1162.8 (4)C8—C9—H9B106.9
C9iii—C1—C9148.6 (8)H9A—C9—H9B106.7
C9iii—C1—H1A99.6C7—C3—C8119.8 (5)
C9—C1—H1A99.6C7—C3—H3120.1
C9iii—C1—H1B99.6C8—C3—H3120.1

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, y, −z+1/2; (iv) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2188).

References

  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943. [PubMed]
  • Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Lang, J. P., Xu, Q. F., Yuan, R. X. & Abrahams, B. F. (2004). Angew. Chem. Int. Ed.43, 4741–4745. [PubMed]
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev.251, 111–141.
  • Zhang, J. F., Song, Y. L., Yang, J. Y., Humphrey, M. G. & Zhang, C. (2008). Cryst. Growth Des.8, 387–390.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography