PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2257.
Published online 2009 August 29. doi:  10.1107/S1600536809033728
PMCID: PMC2970085

4-[(2-Hydr­oxy-1-naphth­yl)(piperidin-1-yl)meth­yl]benzonitrile

Abstract

In the title compound, C23H22N2O, obtained from the condensation reaction of 4-formyl­benzonitrile, 2-naphthol and piperidine, the dihedral angle between the naphthalene ring system and the benzene ring is 75.31 (4)°. The piperidine ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular C—H(...)N hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. An intra­molecular O—H(...)N hydrogen bond is also present.

Related literature

For applications of Betti-type reactions, see: Zhao & Li et al. (2004 [triangle]); Lu et al. (2002 [triangle]); Xu et al. (2004 [triangle]); Wang et al. (2005 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o2257-scheme1.jpg

Experimental

Crystal data

  • C23H22N2O
  • M r = 342.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2257-efi1.jpg
  • a = 6.9989 (6) Å
  • b = 15.588 (1) Å
  • c = 17.211 (1) Å
  • β = 101.207 (2)°
  • V = 1841.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.2 × 0.1 × 0.1 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear, Rigaku, 2005 [triangle]) T min = 0.98, T max = 0.98
  • 10945 measured reflections
  • 3245 independent reflections
  • 2661 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.108
  • S = 1.05
  • 3245 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033728/lx2110sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033728/lx2110Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant (4007041028) and a science technology grant (KJ2009375) from Southeast University to Professor Yong-Hua Li.

supplementary crystallographic information

Comment

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base (Zhao & Li et al. 2004). Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Here we report the synthesis and crystal structure of the title compound, 4-[(2-hydroxy-1-naphthyl)(1-piperidinyl)methyl]benzonitrile (Fig. 1).

The naphthalene (A; C1-C10), benzene (B; C12-C17) and piperidine (C; N2/C19-C23) rings are planar and the dihedral angles between A/B, A/C, and B/C are 75.31 (4)°, 67.24 (5)°, and 88.80 (5)°, respectively. The crystal structure (Fig. 2) is stabilized by intermolecular C–H···N hydrogen bonds between an H atom of benzene ring and the N atom of the nitrile group, with a C14–H14···N1i (Table 1 and Fig. 2), which link the molecules into centrosymmetric dimers. In addition, the crystal structure exhibits an intramolecular O–H···N hydrogen bond, with a O1–H1···N2 (Table 1 and Fig. 2).

Experimental

4-Formylbenzonitrile (1.97 g, 0.015 mol) and piperidine (1.275 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-4:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

H atoms bonded to O atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93-0.97 Å and Uiso(H) = 1.3-1.6Ueq(C).

Figures

Fig. 1.
Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
C–H···N and O–H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code : (i) - x + 2, - y, - z + 2.]

Crystal data

C23H22N2OF(000) = 728
Mr = 342.43Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3760 reflections
a = 6.9989 (6) Åθ = 2.1–26.0°
b = 15.588 (1) ŵ = 0.08 mm1
c = 17.211 (1) ÅT = 296 K
β = 101.207 (2)°Prism, colorless
V = 1841.9 (3) Å30.2 × 0.1 × 0.1 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer3245 independent reflections
Radiation source: fine-focus sealed tube2661 reflections with I > 2σ(I)
graphiteRint = 0.023
CCD_Profile_fitting scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (CrystalClear, Rigaku, 2005)h = −6→8
Tmin = 0.98, Tmax = 0.98k = −19→18
10945 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.108H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2574P] where P = (Fo2 + 2Fc2)/3
3245 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4754 (2)0.29551 (10)0.68027 (8)0.0440 (4)
C20.3079 (2)0.33944 (11)0.68632 (9)0.0530 (4)
C30.1365 (2)0.32981 (13)0.62827 (11)0.0654 (5)
H30.02610.36120.63260.078*
C40.1307 (2)0.27582 (13)0.56662 (10)0.0646 (5)
H40.01630.27050.52900.078*
C50.2951 (2)0.22744 (11)0.55839 (9)0.0525 (4)
C60.2914 (3)0.16868 (12)0.49529 (10)0.0660 (5)
H60.17730.16270.45770.079*
C70.4480 (3)0.12125 (12)0.48807 (10)0.0699 (5)
H70.44130.08270.44640.084*
C80.6191 (3)0.13057 (12)0.54346 (10)0.0653 (5)
H80.72750.09800.53860.078*
C90.6308 (2)0.18670 (10)0.60497 (9)0.0539 (4)
H90.74790.19180.64100.065*
C100.4703 (2)0.23747 (10)0.61557 (8)0.0444 (4)
C110.6626 (2)0.30548 (9)0.74220 (8)0.0413 (3)
H110.77230.29840.71500.050*
C120.6784 (2)0.23582 (9)0.80461 (8)0.0420 (3)
C130.8360 (2)0.18047 (11)0.81721 (9)0.0552 (4)
H130.93150.18630.78680.066*
C140.8543 (3)0.11701 (11)0.87378 (10)0.0616 (5)
H140.96030.07990.88090.074*
C150.7144 (2)0.10873 (10)0.92003 (9)0.0508 (4)
C160.5568 (2)0.16398 (10)0.90883 (9)0.0524 (4)
H160.46340.15930.94040.063*
C170.5384 (2)0.22595 (10)0.85088 (9)0.0487 (4)
H170.43010.26180.84260.058*
C180.7349 (2)0.04403 (12)0.98061 (10)0.0602 (4)
C190.8407 (2)0.39901 (10)0.84592 (9)0.0522 (4)
H19A0.96090.38430.82900.063*
H19B0.82120.35790.88600.063*
C200.8583 (3)0.48792 (11)0.88137 (10)0.0648 (5)
H20A0.96860.48970.92530.078*
H20B0.74190.50100.90180.078*
C210.8851 (3)0.55474 (11)0.82047 (10)0.0667 (5)
H21A0.88420.61170.84310.080*
H21B1.00930.54630.80460.080*
C220.7218 (3)0.54656 (11)0.74953 (11)0.0644 (5)
H22A0.74400.58600.70860.077*
H22B0.59970.56210.76450.077*
C230.70745 (10)0.45642 (4)0.71727 (4)0.0536 (4)
H23A0.59970.45300.67240.064*
H23B0.82600.44250.69870.064*
O10.29677 (10)0.39454 (4)0.74661 (4)0.0697 (4)
H10.43350.40160.77490.094 (7)*
N10.75228 (10)−0.00682 (4)1.02933 (4)0.0807 (5)
N20.67754 (10)0.39314 (4)0.77784 (4)0.0440 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0432 (8)0.0496 (9)0.0387 (8)0.0036 (7)0.0065 (6)0.0061 (7)
C20.0494 (9)0.0591 (10)0.0518 (9)0.0081 (7)0.0131 (7)0.0037 (8)
C30.0420 (9)0.0822 (13)0.0717 (12)0.0114 (8)0.0105 (8)0.0137 (10)
C40.0477 (10)0.0830 (13)0.0578 (10)−0.0052 (9)−0.0029 (8)0.0136 (10)
C50.0512 (9)0.0594 (11)0.0440 (8)−0.0103 (8)0.0023 (7)0.0102 (8)
C60.0754 (12)0.0720 (12)0.0439 (9)−0.0245 (10)−0.0050 (8)0.0024 (9)
C70.0973 (15)0.0600 (12)0.0518 (10)−0.0129 (11)0.0128 (10)−0.0106 (9)
C80.0822 (13)0.0589 (11)0.0544 (10)0.0052 (9)0.0123 (9)−0.0108 (9)
C90.0580 (10)0.0560 (10)0.0459 (9)0.0041 (8)0.0055 (7)−0.0043 (8)
C100.0487 (8)0.0459 (9)0.0378 (8)−0.0035 (7)0.0062 (6)0.0065 (7)
C110.0429 (8)0.0429 (8)0.0385 (7)0.0048 (6)0.0086 (6)−0.0007 (6)
C120.0470 (8)0.0397 (8)0.0369 (7)0.0018 (6)0.0023 (6)−0.0046 (6)
C130.0564 (10)0.0612 (11)0.0494 (9)0.0161 (8)0.0139 (7)0.0094 (8)
C140.0642 (11)0.0632 (11)0.0571 (10)0.0230 (9)0.0108 (9)0.0128 (9)
C150.0601 (10)0.0470 (9)0.0418 (8)0.0005 (7)0.0015 (7)0.0024 (7)
C160.0587 (10)0.0518 (10)0.0476 (9)−0.0017 (8)0.0122 (7)0.0020 (7)
C170.0518 (9)0.0440 (9)0.0504 (9)0.0058 (7)0.0099 (7)0.0015 (7)
C180.0642 (11)0.0609 (11)0.0526 (10)0.0036 (8)0.0042 (8)0.0089 (9)
C190.0622 (10)0.0503 (9)0.0417 (8)−0.0038 (8)0.0040 (7)0.0016 (7)
C200.0842 (13)0.0561 (11)0.0537 (10)−0.0122 (9)0.0126 (9)−0.0089 (8)
C210.0853 (13)0.0460 (10)0.0701 (11)−0.0093 (9)0.0186 (10)−0.0056 (9)
C220.0784 (12)0.0445 (10)0.0725 (11)0.0058 (8)0.0204 (10)0.0086 (9)
C230.0667 (10)0.0486 (9)0.0453 (9)0.0064 (8)0.0101 (7)0.0076 (7)
O10.0583 (8)0.0808 (9)0.0726 (8)0.0192 (6)0.0193 (6)−0.0094 (7)
N10.0778 (11)0.0886 (12)0.0752 (10)0.0136 (9)0.0138 (9)0.0347 (10)
N20.0529 (7)0.0407 (7)0.0382 (6)0.0048 (5)0.0081 (6)0.0009 (5)

Geometric parameters (Å, °)

C1—C21.379 (2)C14—C151.383 (2)
C1—C101.430 (2)C14—H140.9300
C1—C111.528 (2)C15—C161.384 (2)
C2—O11.3609 (2)C15—C181.438 (2)
C2—C31.412 (2)C16—C171.377 (2)
C3—C41.348 (2)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.406 (2)C18—N11.1430 (18)
C4—H40.9300C19—N21.4713 (16)
C5—C61.417 (2)C19—C201.510 (2)
C5—C101.424 (2)C19—H19A0.9700
C6—C71.348 (3)C19—H19B0.9700
C6—H60.9300C20—C211.515 (2)
C7—C81.386 (3)C20—H20A0.9700
C7—H70.9300C20—H20B0.9700
C8—C91.363 (2)C21—C221.507 (2)
C8—H80.9300C21—H21A0.9700
C9—C101.415 (2)C21—H21B0.9700
C9—H90.9300C22—C231.5069 (18)
C11—N21.4931 (2)C22—H22A0.9700
C11—C121.5163 (19)C22—H22B0.9700
C11—H110.9800C23—N21.4793
C12—C131.384 (2)C23—H23A0.9700
C12—C171.386 (2)C23—H23B0.9700
C13—C141.376 (2)O1—H10.9916
C13—H130.9300
C2—C1—C10118.69 (13)C14—C15—C16119.78 (14)
C2—C1—C11121.54 (13)C14—C15—C18120.07 (15)
C10—C1—C11119.74 (12)C16—C15—C18120.15 (15)
O1—C2—C1123.11 (14)C17—C16—C15119.83 (15)
O1—C2—C3116.13 (14)C17—C16—H16120.1
C1—C2—C3120.75 (15)C15—C16—H16120.1
C4—C3—C2121.00 (16)C16—C17—C12121.15 (14)
C4—C3—H3119.5C16—C17—H17119.4
C2—C3—H3119.5C12—C17—H17119.4
C3—C4—C5120.90 (16)N1—C18—C15179.28 (18)
C3—C4—H4119.6N2—C19—C20111.64 (13)
C5—C4—H4119.6N2—C19—H19A109.3
C4—C5—C6122.03 (16)C20—C19—H19A109.3
C4—C5—C10118.90 (15)N2—C19—H19B109.3
C6—C5—C10119.07 (16)C20—C19—H19B109.3
C7—C6—C5122.08 (17)H19A—C19—H19B108.0
C7—C6—H6119.0C19—C20—C21111.28 (14)
C5—C6—H6119.0C19—C20—H20A109.4
C6—C7—C8119.25 (17)C21—C20—H20A109.4
C6—C7—H7120.4C19—C20—H20B109.4
C8—C7—H7120.4C21—C20—H20B109.4
C9—C8—C7121.01 (18)H20A—C20—H20B108.0
C9—C8—H8119.5C22—C21—C20109.03 (15)
C7—C8—H8119.5C22—C21—H21A109.9
C8—C9—C10121.97 (16)C20—C21—H21A109.9
C8—C9—H9119.0C22—C21—H21B109.9
C10—C9—H9119.0C20—C21—H21B109.9
C9—C10—C5116.63 (14)H21A—C21—H21B108.3
C9—C10—C1123.65 (13)C21—C22—C23111.30 (13)
C5—C10—C1119.71 (14)C21—C22—H22A109.4
N2—C11—C12112.00 (10)C23—C22—H22A109.4
N2—C11—C1111.23 (10)C21—C22—H22B109.4
C12—C11—C1110.86 (11)C23—C22—H22B109.4
N2—C11—H11107.5H22A—C22—H22B108.0
C12—C11—H11107.5N2—C23—C22111.75 (7)
C1—C11—H11107.5N2—C23—H23A109.3
C13—C12—C17118.14 (14)C22—C23—H23A109.3
C13—C12—C11120.24 (13)N2—C23—H23B109.3
C17—C12—C11121.61 (13)C22—C23—H23B109.3
C14—C13—C12121.40 (15)H23A—C23—H23B107.9
C14—C13—H13119.3C2—O1—H1104.6
C12—C13—H13119.3C19—N2—C23109.00 (7)
C13—C14—C15119.67 (15)C19—N2—C11111.46 (9)
C13—C14—H14120.2C23—N2—C11109.20 (6)
C15—C14—H14120.2
C10—C1—C2—O1178.47 (12)N2—C11—C12—C13−114.13 (14)
C11—C1—C2—O10.41 (2)C1—C11—C12—C13121.01 (15)
C10—C1—C2—C3−2.3 (2)N2—C11—C12—C1765.30 (16)
C11—C1—C2—C3179.62 (14)C1—C11—C12—C17−59.56 (17)
O1—C2—C3—C4−178.99 (15)C17—C12—C13—C140.2 (2)
C1—C2—C3—C41.8 (3)C11—C12—C13—C14179.64 (15)
C2—C3—C4—C50.0 (3)C12—C13—C14—C15−1.0 (3)
C3—C4—C5—C6178.39 (16)C13—C14—C15—C160.3 (3)
C3—C4—C5—C10−1.2 (2)C13—C14—C15—C18−178.43 (16)
C4—C5—C6—C7−178.88 (17)C14—C15—C16—C171.1 (2)
C10—C5—C6—C70.7 (2)C18—C15—C16—C17179.81 (14)
C5—C6—C7—C8−0.7 (3)C15—C16—C17—C12−1.8 (2)
C6—C7—C8—C90.1 (3)C13—C12—C17—C161.2 (2)
C7—C8—C9—C100.4 (3)C11—C12—C17—C16−178.23 (13)
C8—C9—C10—C5−0.3 (2)C14—C15—C18—N190 (16)
C8—C9—C10—C1178.46 (15)C16—C15—C18—N1−89 (16)
C4—C5—C10—C9179.41 (14)N2—C19—C20—C21−57.87 (19)
C6—C5—C10—C9−0.2 (2)C19—C20—C21—C2254.4 (2)
C4—C5—C10—C10.6 (2)C20—C21—C22—C23−54.38 (19)
C6—C5—C10—C1−179.01 (14)C21—C22—C23—N257.88 (14)
C2—C1—C10—C9−177.59 (15)C20—C19—N2—C2358.52 (13)
C11—C1—C10—C90.5 (2)C20—C19—N2—C11179.12 (12)
C2—C1—C10—C51.2 (2)C22—C23—N2—C19−58.58 (11)
C11—C1—C10—C5179.26 (13)C22—C23—N2—C11179.46 (11)
C2—C1—C11—N2−30.85 (18)C12—C11—N2—C1946.39 (14)
C10—C1—C11—N2151.10 (12)C1—C11—N2—C19171.07 (11)
C2—C1—C11—C1294.46 (16)C12—C11—N2—C23166.88 (8)
C10—C1—C11—C12−83.59 (16)C1—C11—N2—C23−68.46 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N20.991.702.614151
C14—H14···N1i0.932.553.395 (2)151

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2110).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett.43, 8367–8369.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem.70, 1897–1900. [PubMed]
  • Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475–479.
  • Zhao, H., Li, Y. H., Wang, X. S., Qu, Z. R., Wang, L. Z., Xiong, R. G., Abrahams, B. F. & Xue, Z. L. (2004). Chem. Eur. J.10, 2386–2390. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography