PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2229.
Published online 2009 August 26. doi:  10.1107/S1600536809032620
PMCID: PMC2970084

trans-Ethyl­enedi-p-phenyl­ene diacetate

Abstract

The centrosymmetric title compound, C18H26O4, was prepared in high yield from 4-acetoxy­styrene via Ru-catalysed homo-olefin metathesis. Exclusive formation of the E-configurated isomer was observed. In the crystal, a strong C—H(...)π inter­molecular inter­action links the mol­ecules together.

Related literature

For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006 [triangle]). For alternative methodologies for the synthesis of ­oxy-functionalized stilbenes using Wittig-type olefinations or Heck-couplings, see: Kim et al. (2002 [triangle]); Lion et al. (2005 [triangle]); Botella et al. (2004 [triangle]); Reetz et al. (1998 [triangle]). For the bioactivity of various stilbenes with a focus on their anti­cancer activity, see: Aggarwal et al. (2004 [triangle]); Wolter et al. (2002 [triangle]); Fremont (2000 [triangle]); Jang et al. (1997 [triangle]); Wieder et al. (2001 [triangle]). For related structures see: Malone et al. (1997 [triangle]). For a previous synthesis of the title compound see: Johnson et al. (1952 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2229-scheme1.jpg

Experimental

Crystal data

  • C18H16O4
  • M r = 296.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2229-efi1.jpg
  • a = 9.7430 (4) Å
  • b = 7.2839 (4) Å
  • c = 11.2723 (6) Å
  • β = 113.649 (3)°
  • V = 732.78 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.52 × 0.36 × 0.34 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 3533 measured reflections
  • 1595 independent reflections
  • 1119 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.106
  • S = 1.03
  • 1595 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SCHAKAL99 (Keller, 1999 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]) and enCIFer (Allen et al., 2004 [triangle]).

Table 1
Geometry the C—H(...)π interaction (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032620/hg2554sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032620/hg2554Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Resveratrol-related stilbenes exhibit promising anticancer activity (Aggarwal et al., 2004; Wolter et al., 2002; Fremont et al., 2000; Jang et al., 1997). Based on our own research in the field of bioactive stilbenes (Wieder et al., 2001) we decided to reinvestigate the possibility of using a cross-metathesis strategy for the synthesis of compounds of type 1 (Velder et al., 2006) which turned out to be a highly efficient route towards symmetrically as well as unsymmetrically substituted E-stilbenes. Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998)). One of the compounds prepared is the title compound trans-1,2-bis-(4-acetoxyphenyl)ethene. Within each molecule the two planes defined by the arene moieties are co-planar but slightly stepped (by 0.324 (2) Å) due to the fact that the plane defined by the central double bond is twisted by a torsion angle of -13.8 (2)° (C1a—C1—C2—C7) and 165.7 (15)° (C1a—C1—C2—C3), respectively (figure 1). The molecules form layers which are intermolecularly linked through a C—H···π interaction of type III (Malone et al. 1997). This interaction occurs between the H atom of one phenyl group and the π-system of the other phenyl moiety (figure 2). With a H···π distance of only 2.77 Å these interactions are rather strong.

Experimental

In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, 2 mol %) was weighted into a 25 ml Schlenk tube, which was sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3-acetoxy-styrene (1.0 g, 6.17 mmol) in CH2Cl2 (20 ml) was added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by recrystallization from EtOAc/cyclohexane 5:1 to give 0.8 g (88%) of the homo-metathesis product 1. mp. 214 °C (Johnson et al. (1952) 215–218°C). 1H NMR (300 MHz, CDCl3): δ = 2.29 (s, 3H, CH3), 7.04 (s, 1H, CH=), 7.08 (d, 2H, J = 8.7 Hz, H-3, H-5), 7.49 (d, 2H, J = 8.7 Hz, H-2, H-6); 13C NMR (300 MHz, CDCl3): δ = 21.2 (CH3), 121.8 (C-3, C-5), 127.4 (C-2, C-6), 127.9 (C-7), 135.0 (C-1), 150.1 (C-4), 169.5 (C=O); HRMS, calcd for C18H16O4 (M+) 296.1048, found 296.105.

Refinement

Hydrogen atoms were located in difference syntheses, and are refined at idealized positions (C—H = 0.98Å for methyl H atoms and 0.95Å for all other H Atoms) using a riding model, the U values of the H atoms are constrained relative to Ueq of the parent carbon atom (1.2 x Ueq(C) for C—H and 1.5 x Ueq(C) for methyl H).

Figures

Fig. 1.
A top view of 1. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Intramolecular C—H···π interactions.

Crystal data

C18H16O4F(000) = 312
Mr = 296.31Dx = 1.343 Mg m3
Monoclinic, P21/cMelting point: 214 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7430 (4) ÅCell parameters from 3533 reflections
b = 7.2839 (4) Åθ = 2.3–27.0°
c = 11.2723 (6) ŵ = 0.10 mm1
β = 113.649 (3)°T = 100 K
V = 732.78 (7) Å3Needle, colourless
Z = 20.52 × 0.36 × 0.34 mm

Data collection

Nonius KappaCCD diffractometer1119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
graphiteθmax = 27.0°, θmin = 2.3°
[var phi] and ω scansh = −12→12
3533 measured reflectionsk = −8→9
1595 independent reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0486P)2 + 0.0561P] where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max = 0.002
101 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The coordinates of the hydrogen atoms are constrained, and the U values of the H atoms are constrained relative to the Ueq of the atom the hydrogen binds to (1.2 for CH and CH2, 1.5 for CH3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.26496 (12)0.47976 (14)0.58904 (9)0.0210 (3)
O20.37476 (12)0.75603 (15)0.60504 (10)0.0249 (3)
C10.06877 (16)0.48067 (19)0.04361 (14)0.0165 (3)
H10.14120.44660.01110.020*
C20.11855 (16)0.48580 (19)0.18473 (14)0.0151 (3)
C30.25433 (16)0.4033 (2)0.26319 (14)0.0171 (3)
H30.31340.34680.22380.020*
C40.30488 (16)0.4019 (2)0.39715 (14)0.0176 (3)
H40.39710.34460.44920.021*
C50.21842 (17)0.4853 (2)0.45310 (13)0.0165 (4)
C60.08410 (17)0.5691 (2)0.37923 (14)0.0189 (4)
H60.02610.62590.41950.023*
C70.03502 (17)0.5694 (2)0.24605 (14)0.0179 (4)
H7−0.05720.62740.19500.021*
C80.34023 (17)0.6307 (2)0.65644 (15)0.0187 (4)
C90.37163 (18)0.6128 (2)0.79670 (14)0.0245 (4)
H9A0.42100.72450.84240.037*
H9B0.43730.50700.83300.037*
H9C0.27730.59510.80690.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0304 (7)0.0177 (6)0.0123 (6)−0.0031 (5)0.0058 (5)−0.0012 (4)
O20.0264 (7)0.0227 (6)0.0258 (6)−0.0058 (5)0.0106 (5)−0.0025 (5)
C10.0191 (8)0.0139 (8)0.0174 (8)−0.0008 (6)0.0083 (6)−0.0011 (6)
C20.0168 (8)0.0117 (7)0.0154 (8)−0.0031 (6)0.0051 (6)0.0008 (6)
C30.0184 (8)0.0156 (8)0.0175 (8)−0.0012 (6)0.0076 (7)−0.0019 (6)
C40.0156 (8)0.0154 (8)0.0181 (8)−0.0004 (6)0.0027 (6)0.0013 (6)
C50.0239 (9)0.0132 (8)0.0106 (8)−0.0049 (6)0.0049 (7)−0.0005 (6)
C60.0245 (9)0.0145 (8)0.0192 (8)0.0008 (6)0.0102 (7)−0.0023 (6)
C70.0198 (9)0.0152 (8)0.0169 (8)0.0018 (6)0.0055 (7)0.0010 (6)
C80.0146 (8)0.0187 (9)0.0212 (8)0.0035 (6)0.0056 (7)−0.0039 (7)
C90.0275 (9)0.0245 (9)0.0174 (9)0.0029 (7)0.0046 (7)−0.0037 (7)

Geometric parameters (Å, °)

O1—C81.3700 (18)C4—C51.380 (2)
O1—C51.4135 (16)C4—H40.9500
O2—C81.1994 (17)C5—C61.380 (2)
C1—C1i1.336 (3)C6—C71.381 (2)
C1—C21.466 (2)C6—H60.9500
C1—H10.9500C7—H70.9500
C2—C31.398 (2)C8—C91.491 (2)
C2—C71.401 (2)C9—H9A0.9800
C3—C41.388 (2)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C8—O1—C5116.48 (11)C5—C6—C7119.19 (14)
C1i—C1—C2126.23 (17)C5—C6—H6120.4
C1i—C1—H1116.9C7—C6—H6120.4
C2—C1—H1116.9C6—C7—C2121.30 (14)
C3—C2—C7117.66 (14)C6—C7—H7119.3
C3—C2—C1119.52 (13)C2—C7—H7119.3
C7—C2—C1122.81 (13)O2—C8—O1122.30 (14)
C4—C3—C2121.62 (14)O2—C8—C9126.94 (14)
C4—C3—H3119.2O1—C8—C9110.76 (13)
C2—C3—H3119.2C8—C9—H9A109.5
C5—C4—C3118.61 (14)C8—C9—H9B109.5
C5—C4—H4120.7H9A—C9—H9B109.5
C3—C4—H4120.7C8—C9—H9C109.5
C4—C5—C6121.62 (13)H9A—C9—H9C109.5
C4—C5—O1119.59 (13)H9B—C9—H9C109.5
C6—C5—O1118.75 (13)
C1i—C1—C2—C3165.70 (18)C8—O1—C5—C6−85.05 (16)
C1i—C1—C2—C7−13.8 (3)C4—C5—C6—C70.0 (2)
C7—C2—C3—C40.6 (2)O1—C5—C6—C7−177.66 (13)
C1—C2—C3—C4−178.87 (13)C5—C6—C7—C20.3 (2)
C2—C3—C4—C5−0.4 (2)C3—C2—C7—C6−0.6 (2)
C3—C4—C5—C60.1 (2)C1—C2—C7—C6178.93 (13)
C3—C4—C5—O1177.71 (12)C5—O1—C8—O2−5.1 (2)
C8—O1—C5—C497.22 (15)C5—O1—C8—C9175.46 (12)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1ii0.952.813.539 (2)135

Symmetry codes: (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2554).

References

  • Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res.24, 2783–2840. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Botella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563–5570.
  • Fremont, L. (2000). Life Sci.66, 663–673. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218–220. [PubMed]
  • Johnson, W. S., Ericson, C. A. & Ackerman, J. (1952). J. Am. Chem. Soc.74, 2251–2253.
  • Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
  • Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem.45, 160–164. [PubMed]
  • Lion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem.48, 1292–1295. [PubMed]
  • Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans.93, 3429–3436.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Reetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed.37, 481–483.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Velder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273–278.
  • Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735–1742. [PubMed]
  • Wolter, F. & Stein, J. (2002). Drugs Future, 27, 949–960.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography