PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2070–o2071.
Published online 2009 August 8. doi:  10.1107/S1600536809029754
PMCID: PMC2970083

Ethyl 4-butyl­amino-3-nitro­benzoate

Abstract

In the crystal structure of the title compound, C13H18N2O4, the asymmetric unit consists of three crystallographically independent ethyl 4-butyl­amino-3-nitro­benzoate mol­ecules. There is an intra­molecular N—H(...)O hydrogen bond in each mol­ecule, which generates an S(6) ring motif. The structure is stabilized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For nitro­benzoic acid, see: Brouillette et al. (1999 [triangle]); Williams et al. (1995 [triangle]); For benzimdazole derivatives, see Ozden et al. (2005 [triangle]); Beaulieu et al. (2004 [triangle]); Kilburn et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2070-scheme1.jpg

Experimental

Crystal data

  • C13H18N2O4
  • M r = 266.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2070-efi1.jpg
  • a = 65.292 (2) Å
  • b = 3.9555 (2) Å
  • c = 31.4417 (11) Å
  • β = 104.833 (3)°
  • V = 7849.6 (5) Å3
  • Z = 24
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.40 × 0.19 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.915, T max = 0.997
  • 85498 measured reflections
  • 8991 independent reflections
  • 6753 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.177
  • S = 1.13
  • 8991 reflections
  • 532 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029754/bq2152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029754/bq2152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SNNB, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB acknowledges the USM for a Postdoctoral Research Fellowship. HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest (Brouillette et al. 1999; Williams et al. 1995). The synthesis of novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives (Ozden et al. 2005), non-nucleoside benzimidazole-based allosteric inhibitors of the hepatitis C virus ns5b polymerase inhibitors (Beaulieu et al. 2004) and solid-phase synthesis of substituted 2-aminomethyl benzimidazoles (Kilburn et al. 2000) were commonly accessed via nitrobenzoic acid derivatives. As part of an ongoing study on such compounds, in this paper, we present the crystal structure of the title compound, (I), which was synthesized as an intermediate.

The asymmetric unit of (I) consists of three crystallographically independent ethyl 4-(butylamino)-3-nitrobenzoate molecules (A, B & C), as shown in Fig. 1. Three intramolecular N—H···O hydrogen bonds generate S(6) ring motifs (Table 1).

In the crystal structure, in two molecules (A & B), the hydrogen atom attached to the nitrogen atom is hydrogen-bonded to the nitro group oxygen atoms via N—H···O hydrogen bonds to form tandem hydrogen bonds. Here both the hydrogen atoms act as bifurcated donor and the oxygen atom act as bifurcated acceptor. In addition, these neighboring molecules are linked by C—H···O hydrogen bonds along the [1 0 0] direction. Interestingly enough, the molecules C are not linked by any intermolecular interactions (Fig. 2).

Experimental

The title compound was synthesized by adding N,N-diisopropyl ethylamine (DIPEA) (0.20 ml, 1.12 mmol) dropwise to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (0.21 g, 1 mmol) in dry dichloromethane (10 ml). Butylamine (0.10 ml, 1 mmol) was added slowly with stirring, and then the mixture was stirred overnight at room temperature under N2. After completion of the reaction, the mixture was washed with 10% Na2CO3 (10 ml). The aqueous layer was washed again with dichloromethane (3 × 10 ml). The organic fractions were pooled, dried over MgSO4 and the solvent was evaporated in vacuo. Recrystallization with hot hexane afforded the title compound as yellow needle-like crystals.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The nitrogen H atoms were located from the difference Fourier map [N–H = 0.82 (3)–0.89 (3) Å] and allowed to refine freely.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate hydrogen bonding.
Fig. 2.
Part of the crystal packing (I). Dashed lines indicate the hydrogen bonding.

Crystal data

C13H18N2O4F(000) = 3408
Mr = 266.29Dx = 1.352 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8010 reflections
a = 65.292 (2) Åθ = 0.00–0.00°
b = 3.9555 (2) ŵ = 0.10 mm1
c = 31.4417 (11) ÅT = 100 K
β = 104.833 (3)°Needle, yellow
V = 7849.6 (5) Å30.40 × 0.19 × 0.03 mm
Z = 24

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8991 independent reflections
Radiation source: fine-focus sealed tube6753 reflections with I > 2σ(I)
graphiteRint = 0.090
[var phi] and ω scansθmax = 27.5°, θmin = 0.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −84→84
Tmin = 0.915, Tmax = 0.997k = −5→5
85498 measured reflectionsl = −40→40

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.04P)2 + 36.3175P] where P = (Fo2 + 2Fc2)/3
8991 reflections(Δ/σ)max < 0.001
532 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.06501 (3)−0.0471 (6)0.49353 (6)0.0262 (5)
O2A0.03378 (3)0.2100 (5)0.48936 (6)0.0201 (4)
O3A−0.00677 (3)0.6630 (6)0.35544 (6)0.0252 (5)
O4A0.00171 (3)0.6139 (6)0.29354 (6)0.0229 (5)
N1A0.00508 (4)0.5558 (6)0.33362 (8)0.0188 (5)
N2A0.03624 (4)0.2884 (7)0.28855 (8)0.0178 (5)
C1A0.01824 (5)0.2944 (9)0.54946 (9)0.0257 (7)
H1AA0.02070.28750.58090.039*
H1AB0.00680.14400.53630.039*
H1AC0.01460.52060.53920.039*
C2A0.03805 (4)0.1864 (8)0.53679 (9)0.0215 (6)
H2AA0.04980.33260.55060.026*
H2AB0.0417−0.04400.54630.026*
C3A0.04914 (4)0.0866 (8)0.47201 (9)0.0187 (6)
C4A0.04423 (4)0.1364 (7)0.42388 (9)0.0170 (6)
C5A0.02675 (4)0.3068 (7)0.39999 (9)0.0165 (6)
H5AA0.01690.38860.41410.020*
C6A0.02354 (4)0.3594 (7)0.35516 (9)0.0169 (6)
C7A0.03814 (4)0.2401 (7)0.33173 (9)0.0165 (6)
C8A0.05587 (4)0.0581 (7)0.35738 (9)0.0176 (6)
H8AA0.0657−0.03040.34360.021*
C9A0.05883 (4)0.0099 (8)0.40161 (9)0.0181 (6)
H9AA0.0707−0.10830.41730.022*
C10A0.05237 (4)0.1805 (8)0.26671 (9)0.0180 (6)
H10E0.0547−0.06070.27080.022*
H10F0.06560.29560.27980.022*
C11A0.04547 (4)0.2598 (8)0.21793 (9)0.0185 (6)
H11E0.04160.49670.21400.022*
H11F0.03300.12670.20440.022*
C12A0.06284 (4)0.1846 (8)0.19501 (9)0.0191 (6)
H12E0.0668−0.05150.19940.023*
H12F0.07520.32010.20830.023*
C13A0.05590 (5)0.2592 (9)0.14579 (9)0.0257 (7)
H13G0.06680.18900.13220.038*
H13H0.05350.49740.14130.038*
H13I0.04310.13800.13290.038*
O1B0.09697 (3)0.7037 (6)0.30897 (7)0.0264 (5)
O2B0.12968 (3)0.9272 (6)0.32094 (6)0.0230 (5)
O3B0.17262 (3)1.0571 (6)0.46621 (7)0.0286 (5)
O4B0.16496 (3)0.8443 (6)0.52368 (6)0.0248 (5)
N1B0.16074 (3)0.8951 (7)0.48336 (8)0.0195 (5)
N2B0.12866 (4)0.5300 (7)0.51718 (8)0.0188 (5)
C1B0.14493 (5)1.1508 (9)0.26583 (10)0.0293 (7)
H1BA0.14231.21670.23550.044*
H1BB0.15570.97980.27220.044*
H1BC0.14961.34370.28430.044*
C2B0.12485 (4)1.0126 (9)0.27447 (9)0.0240 (7)
H2BA0.11371.18070.26740.029*
H2BB0.12020.81330.25660.029*
C3B0.11389 (4)0.7744 (8)0.33400 (9)0.0191 (6)
C4B0.11916 (4)0.7104 (8)0.38191 (9)0.0183 (6)
C5B0.13752 (4)0.8196 (8)0.41074 (9)0.0188 (6)
H5BA0.14760.93390.40010.023*
C6B0.14114 (4)0.7609 (7)0.45575 (9)0.0169 (6)
C7B0.12620 (4)0.5899 (7)0.47410 (9)0.0159 (6)
C8B0.10746 (4)0.4822 (8)0.44326 (9)0.0199 (6)
H8BA0.09710.37030.45340.024*
C9B0.10416 (4)0.5381 (8)0.39906 (9)0.0194 (6)
H9BA0.09170.46050.37990.023*
C10B0.11209 (4)0.3819 (7)0.53512 (9)0.0174 (6)
H10C0.10830.16020.52230.021*
H10D0.09950.52340.52760.021*
C11B0.11981 (4)0.3507 (8)0.58467 (9)0.0197 (6)
H11C0.12470.56960.59710.024*
H11D0.13170.19540.59190.024*
C12B0.10245 (4)0.2244 (8)0.60518 (9)0.0217 (6)
H12C0.09730.00790.59240.026*
H12D0.09070.38260.59860.026*
C13B0.11062 (5)0.1861 (10)0.65495 (10)0.0344 (8)
H13D0.09940.10520.66690.052*
H13E0.11550.40130.66780.052*
H13F0.12210.02770.66150.052*
O1C0.23186 (3)1.0386 (6)0.33479 (6)0.0234 (5)
O2C0.19996 (3)1.2945 (6)0.31998 (6)0.0206 (4)
O3C0.15980 (3)1.4495 (6)0.17315 (7)0.0270 (5)
O4C0.16732 (3)1.2089 (6)0.11696 (6)0.0241 (5)
N1C0.17152 (3)1.2711 (6)0.15709 (8)0.0184 (5)
N2C0.20352 (4)0.8875 (6)0.12565 (8)0.0168 (5)
C1C0.18335 (5)1.5198 (9)0.37305 (10)0.0257 (7)
H1CA0.18541.58710.40320.039*
H1CB0.17231.35260.36580.039*
H1CC0.17931.71310.35430.039*
C2C0.20364 (5)1.3733 (8)0.36649 (9)0.0222 (6)
H2CA0.21511.53540.37530.027*
H2CB0.20741.17030.38400.027*
C3C0.21578 (4)1.1305 (7)0.30853 (9)0.0179 (6)
C4C0.21160 (4)1.0758 (7)0.26043 (9)0.0162 (6)
C5C0.19371 (4)1.1935 (7)0.23052 (9)0.0157 (5)
H5CA0.18361.31320.24040.019*
C6C0.19066 (4)1.1347 (7)0.18548 (9)0.0157 (6)
C7C0.20581 (4)0.9571 (7)0.16860 (9)0.0146 (5)
C8C0.22437 (4)0.8497 (7)0.20039 (9)0.0158 (6)
H8CA0.23500.74100.19090.019*
C9C0.22695 (4)0.9016 (7)0.24435 (9)0.0163 (6)
H9CA0.23910.82050.26420.020*
C10C0.22007 (4)0.7308 (8)0.10874 (9)0.0177 (6)
H10A0.22410.51610.12340.021*
H10B0.23250.87560.11480.021*
C11C0.21220 (4)0.6747 (8)0.05957 (9)0.0180 (6)
H11A0.20720.88760.04540.022*
H11B0.20030.51880.05390.022*
C12C0.22942 (4)0.5331 (8)0.03965 (9)0.0197 (6)
H12A0.23470.32340.05440.024*
H12B0.24110.69200.04460.024*
C13C0.22125 (5)0.4672 (8)−0.00982 (9)0.0245 (7)
H13A0.23250.3744−0.02090.037*
H13B0.21650.6758−0.02470.037*
H13C0.20970.3100−0.01490.037*
H2NB0.1398 (5)0.593 (9)0.5348 (10)0.020 (8)*
H2NA0.0249 (5)0.402 (9)0.2736 (11)0.028 (9)*
H2NC0.1923 (5)0.941 (10)0.1086 (11)0.031 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0196 (10)0.0369 (13)0.0205 (10)0.0087 (10)0.0024 (8)0.0007 (10)
O2A0.0190 (10)0.0275 (12)0.0135 (9)0.0031 (9)0.0034 (8)−0.0003 (8)
O3A0.0217 (10)0.0356 (13)0.0196 (10)0.0082 (10)0.0073 (8)0.0022 (10)
O4A0.0197 (10)0.0314 (13)0.0172 (10)0.0040 (9)0.0043 (8)0.0028 (9)
N1A0.0162 (11)0.0206 (13)0.0207 (12)−0.0002 (10)0.0068 (9)−0.0007 (10)
N2A0.0159 (11)0.0208 (13)0.0171 (12)0.0009 (10)0.0047 (9)0.0001 (10)
C1A0.0283 (16)0.0309 (18)0.0176 (14)0.0024 (14)0.0054 (12)−0.0006 (13)
C2A0.0240 (14)0.0269 (16)0.0122 (13)0.0025 (13)0.0018 (11)0.0018 (12)
C3A0.0161 (13)0.0203 (15)0.0202 (14)−0.0013 (11)0.0054 (11)−0.0033 (12)
C4A0.0144 (13)0.0190 (15)0.0176 (13)−0.0029 (11)0.0040 (10)−0.0005 (11)
C5A0.0148 (12)0.0178 (14)0.0179 (13)−0.0021 (11)0.0057 (10)−0.0006 (11)
C6A0.0138 (12)0.0164 (14)0.0198 (14)−0.0021 (11)0.0029 (10)−0.0006 (11)
C7A0.0158 (13)0.0155 (14)0.0188 (14)−0.0042 (11)0.0053 (10)−0.0026 (11)
C8A0.0125 (12)0.0193 (15)0.0219 (14)−0.0006 (11)0.0057 (11)−0.0035 (12)
C9A0.0130 (12)0.0205 (15)0.0198 (14)−0.0021 (11)0.0021 (10)0.0022 (12)
C10A0.0175 (13)0.0187 (15)0.0193 (14)0.0000 (11)0.0073 (11)−0.0010 (12)
C11A0.0149 (13)0.0219 (15)0.0193 (14)−0.0008 (11)0.0055 (11)−0.0027 (12)
C12A0.0179 (13)0.0187 (15)0.0217 (14)0.0012 (11)0.0072 (11)−0.0004 (12)
C13A0.0261 (15)0.0282 (18)0.0242 (16)0.0009 (13)0.0091 (12)−0.0009 (13)
O1B0.0195 (10)0.0355 (13)0.0224 (11)−0.0074 (10)0.0022 (8)−0.0008 (10)
O2B0.0163 (10)0.0352 (13)0.0175 (10)−0.0057 (9)0.0045 (8)0.0021 (9)
O3B0.0199 (10)0.0415 (14)0.0237 (11)−0.0123 (10)0.0045 (9)0.0017 (10)
O4B0.0189 (10)0.0381 (13)0.0154 (10)−0.0051 (9)0.0008 (8)0.0010 (9)
N1B0.0130 (11)0.0241 (14)0.0210 (13)−0.0010 (10)0.0038 (9)−0.0006 (10)
N2B0.0140 (11)0.0228 (13)0.0191 (12)−0.0029 (10)0.0032 (10)−0.0010 (10)
C1B0.0282 (16)0.0359 (19)0.0233 (16)−0.0036 (15)0.0053 (13)0.0032 (14)
C2B0.0205 (14)0.0333 (18)0.0172 (14)−0.0028 (13)0.0027 (11)0.0011 (13)
C3B0.0162 (13)0.0199 (15)0.0217 (14)−0.0008 (11)0.0058 (11)−0.0023 (12)
C4B0.0143 (13)0.0209 (15)0.0198 (14)−0.0005 (11)0.0043 (11)−0.0015 (12)
C5B0.0141 (13)0.0208 (15)0.0227 (15)−0.0007 (11)0.0071 (11)−0.0013 (12)
C6B0.0128 (12)0.0180 (14)0.0196 (14)0.0002 (11)0.0036 (10)−0.0021 (11)
C7B0.0139 (12)0.0166 (14)0.0171 (13)0.0031 (11)0.0039 (10)0.0004 (11)
C8B0.0151 (13)0.0208 (15)0.0244 (15)−0.0012 (11)0.0063 (11)−0.0029 (12)
C9B0.0143 (13)0.0201 (15)0.0225 (14)−0.0029 (11)0.0022 (11)−0.0049 (12)
C10B0.0131 (12)0.0182 (15)0.0219 (14)−0.0005 (11)0.0062 (11)0.0008 (12)
C11B0.0174 (13)0.0208 (15)0.0218 (15)−0.0011 (12)0.0066 (11)0.0013 (12)
C12B0.0204 (14)0.0261 (17)0.0196 (14)−0.0027 (12)0.0067 (11)0.0003 (12)
C13B0.0307 (17)0.051 (2)0.0226 (16)−0.0128 (17)0.0083 (13)0.0041 (16)
O1C0.0148 (10)0.0350 (13)0.0185 (10)0.0006 (9)0.0007 (8)−0.0032 (9)
O2C0.0179 (10)0.0288 (12)0.0141 (9)0.0017 (9)0.0022 (7)−0.0049 (9)
O3C0.0205 (10)0.0375 (14)0.0228 (11)0.0125 (10)0.0053 (8)0.0009 (10)
O4C0.0192 (10)0.0361 (13)0.0155 (10)0.0058 (9)0.0016 (8)−0.0018 (9)
N1C0.0143 (11)0.0222 (13)0.0194 (12)0.0006 (10)0.0056 (9)0.0006 (10)
N2C0.0141 (11)0.0207 (13)0.0152 (12)0.0015 (10)0.0030 (9)0.0004 (10)
C1C0.0250 (15)0.0306 (18)0.0219 (15)0.0012 (13)0.0068 (12)−0.0049 (13)
C2C0.0233 (14)0.0294 (17)0.0121 (13)−0.0020 (13)0.0012 (11)−0.0041 (12)
C3C0.0157 (13)0.0173 (15)0.0204 (14)−0.0034 (11)0.0043 (11)−0.0018 (11)
C4C0.0147 (12)0.0149 (14)0.0188 (13)−0.0048 (11)0.0043 (10)−0.0002 (11)
C5C0.0147 (12)0.0159 (14)0.0175 (13)−0.0029 (11)0.0057 (10)−0.0006 (11)
C6C0.0116 (12)0.0176 (14)0.0165 (13)−0.0004 (10)0.0012 (10)0.0037 (11)
C7C0.0135 (12)0.0124 (13)0.0183 (13)−0.0019 (10)0.0048 (10)0.0011 (11)
C8C0.0119 (12)0.0153 (14)0.0201 (14)0.0009 (10)0.0038 (10)0.0008 (11)
C9C0.0139 (12)0.0144 (14)0.0189 (14)−0.0015 (11)0.0011 (10)0.0009 (11)
C10C0.0146 (12)0.0204 (15)0.0184 (14)0.0015 (11)0.0048 (10)0.0001 (12)
C11C0.0157 (13)0.0200 (15)0.0179 (14)0.0008 (11)0.0033 (10)−0.0005 (12)
C12C0.0187 (13)0.0200 (15)0.0214 (14)0.0014 (12)0.0072 (11)−0.0001 (12)
C13C0.0261 (15)0.0265 (17)0.0225 (15)0.0039 (13)0.0091 (12)0.0011 (13)

Geometric parameters (Å, °)

O1A—C3A1.205 (3)C5B—H5BA0.9300
O2A—C3A1.350 (3)C6B—C7B1.425 (4)
O2A—C2A1.449 (3)C7B—C8B1.418 (4)
O3A—N1A1.233 (3)C8B—C9B1.369 (4)
O4A—N1A1.244 (3)C8B—H8BA0.9300
N1A—C6A1.448 (4)C9B—H9BA0.9300
N2A—C7A1.345 (3)C10B—C11B1.515 (4)
N2A—C10A1.460 (3)C10B—H10C0.9700
N2A—H2NA0.89 (3)C10B—H10D0.9700
C1A—C2A1.510 (4)C11B—C12B1.524 (4)
C1A—H1AA0.9600C11B—H11C0.9700
C1A—H1AB0.9600C11B—H11D0.9700
C1A—H1AC0.9600C12B—C13B1.526 (4)
C2A—H2AA0.9700C12B—H12C0.9700
C2A—H2AB0.9700C12B—H12D0.9700
C3A—C4A1.478 (4)C13B—H13D0.9600
C4A—C5A1.372 (4)C13B—H13E0.9600
C4A—C9A1.411 (4)C13B—H13F0.9600
C5A—C6A1.387 (4)O1C—C3C1.213 (3)
C5A—H5AA0.9300O2C—C3C1.345 (3)
C6A—C7A1.426 (4)O2C—C2C1.454 (3)
C7A—C8A1.425 (4)O3C—N1C1.239 (3)
C8A—C9A1.368 (4)O4C—N1C1.245 (3)
C8A—H8AA0.9300N1C—C6C1.442 (3)
C9A—H9AA0.9300N2C—C7C1.348 (3)
C10A—C11A1.516 (4)N2C—C10C1.460 (3)
C10A—H10E0.9700N2C—H2NC0.82 (3)
C10A—H10F0.9700C1C—C2C1.508 (4)
C11A—C12A1.521 (4)C1C—H1CA0.9600
C11A—H11E0.9700C1C—H1CB0.9600
C11A—H11F0.9700C1C—H1CC0.9600
C12A—C13A1.526 (4)C2C—H2CA0.9700
C12A—H12E0.9700C2C—H2CB0.9700
C12A—H12F0.9700C3C—C4C1.482 (4)
C13A—H13G0.9600C4C—C5C1.379 (4)
C13A—H13H0.9600C4C—C9C1.412 (4)
C13A—H13I0.9600C5C—C6C1.398 (4)
O1B—C3B1.214 (3)C5C—H5CA0.9300
O2B—C3B1.346 (3)C6C—C7C1.422 (4)
O2B—C2B1.454 (3)C7C—C8C1.424 (4)
O3B—N1B1.232 (3)C8C—C9C1.364 (4)
O4B—N1B1.243 (3)C8C—H8CA0.9300
N1B—C6B1.451 (3)C9C—H9CA0.9300
N2B—C7B1.344 (3)C10C—C11C1.515 (4)
N2B—C10B1.465 (3)C10C—H10A0.9700
N2B—H2NB0.83 (3)C10C—H10B0.9700
C1B—C2B1.508 (4)C11C—C12C1.526 (4)
C1B—H1BA0.9600C11C—H11A0.9700
C1B—H1BB0.9600C11C—H11B0.9700
C1B—H1BC0.9600C12C—C13C1.532 (4)
C2B—H2BA0.9700C12C—H12A0.9700
C2B—H2BB0.9700C12C—H12B0.9700
C3B—C4B1.479 (4)C13C—H13A0.9600
C4B—C5B1.374 (4)C13C—H13B0.9600
C4B—C9B1.409 (4)C13C—H13C0.9600
C5B—C6B1.393 (4)
C3A—O2A—C2A115.2 (2)N2B—C7B—C6B125.0 (2)
O3A—N1A—O4A121.8 (2)C8B—C7B—C6B115.2 (2)
O3A—N1A—C6A119.3 (2)C9B—C8B—C7B122.0 (3)
O4A—N1A—C6A118.9 (2)C9B—C8B—H8BA119.0
C7A—N2A—C10A122.8 (2)C7B—C8B—H8BA119.0
C7A—N2A—H2NA117 (2)C8B—C9B—C4B121.5 (3)
C10A—N2A—H2NA120 (2)C8B—C9B—H9BA119.3
C2A—C1A—H1AA109.5C4B—C9B—H9BA119.3
C2A—C1A—H1AB109.5N2B—C10B—C11B110.1 (2)
H1AA—C1A—H1AB109.5N2B—C10B—H10C109.6
C2A—C1A—H1AC109.5C11B—C10B—H10C109.6
H1AA—C1A—H1AC109.5N2B—C10B—H10D109.6
H1AB—C1A—H1AC109.5C11B—C10B—H10D109.6
O2A—C2A—C1A107.5 (2)H10C—C10B—H10D108.1
O2A—C2A—H2AA110.2C10B—C11B—C12B111.9 (2)
C1A—C2A—H2AA110.2C10B—C11B—H11C109.2
O2A—C2A—H2AB110.2C12B—C11B—H11C109.2
C1A—C2A—H2AB110.2C10B—C11B—H11D109.2
H2AA—C2A—H2AB108.5C12B—C11B—H11D109.2
O1A—C3A—O2A123.6 (3)H11C—C11B—H11D107.9
O1A—C3A—C4A124.3 (3)C11B—C12B—C13B111.3 (2)
O2A—C3A—C4A112.1 (2)C11B—C12B—H12C109.4
C5A—C4A—C9A118.4 (3)C13B—C12B—H12C109.4
C5A—C4A—C3A123.9 (2)C11B—C12B—H12D109.4
C9A—C4A—C3A117.7 (2)C13B—C12B—H12D109.4
C4A—C5A—C6A121.2 (3)H12C—C12B—H12D108.0
C4A—C5A—H5AA119.4C12B—C13B—H13D109.5
C6A—C5A—H5AA119.4C12B—C13B—H13E109.5
C5A—C6A—C7A121.9 (3)H13D—C13B—H13E109.5
C5A—C6A—N1A116.6 (2)C12B—C13B—H13F109.5
C7A—C6A—N1A121.5 (2)H13D—C13B—H13F109.5
N2A—C7A—C8A119.6 (2)H13E—C13B—H13F109.5
N2A—C7A—C6A125.0 (3)C3C—O2C—C2C115.6 (2)
C8A—C7A—C6A115.4 (2)O3C—N1C—O4C121.8 (2)
C9A—C8A—C7A121.9 (3)O3C—N1C—C6C119.2 (2)
C9A—C8A—H8AA119.0O4C—N1C—C6C119.0 (2)
C7A—C8A—H8AA119.0C7C—N2C—C10C123.3 (2)
C8A—C9A—C4A121.2 (3)C7C—N2C—H2NC117 (2)
C8A—C9A—H9AA119.4C10C—N2C—H2NC120 (2)
C4A—C9A—H9AA119.4C2C—C1C—H1CA109.5
N2A—C10A—C11A110.6 (2)C2C—C1C—H1CB109.5
N2A—C10A—H10E109.5H1CA—C1C—H1CB109.5
C11A—C10A—H10E109.5C2C—C1C—H1CC109.5
N2A—C10A—H10F109.5H1CA—C1C—H1CC109.5
C11A—C10A—H10F109.5H1CB—C1C—H1CC109.5
H10E—C10A—H10F108.1O2C—C2C—C1C107.2 (2)
C10A—C11A—C12A112.0 (2)O2C—C2C—H2CA110.3
C10A—C11A—H11E109.2C1C—C2C—H2CA110.3
C12A—C11A—H11E109.2O2C—C2C—H2CB110.3
C10A—C11A—H11F109.2C1C—C2C—H2CB110.3
C12A—C11A—H11F109.2H2CA—C2C—H2CB108.5
H11E—C11A—H11F107.9O1C—C3C—O2C123.5 (3)
C11A—C12A—C13A112.3 (2)O1C—C3C—C4C123.5 (3)
C11A—C12A—H12E109.2O2C—C3C—C4C113.0 (2)
C13A—C12A—H12E109.2C5C—C4C—C9C118.4 (2)
C11A—C12A—H12F109.2C5C—C4C—C3C123.3 (2)
C13A—C12A—H12F109.2C9C—C4C—C3C118.3 (2)
H12E—C12A—H12F107.9C4C—C5C—C6C120.7 (3)
C12A—C13A—H13G109.5C4C—C5C—H5CA119.6
C12A—C13A—H13H109.5C6C—C5C—H5CA119.6
H13G—C13A—H13H109.5C5C—C6C—C7C121.8 (2)
C12A—C13A—H13I109.5C5C—C6C—N1C116.2 (2)
H13G—C13A—H13I109.5C7C—C6C—N1C122.0 (2)
H13H—C13A—H13I109.5N2C—C7C—C6C124.4 (2)
C3B—O2B—C2B115.1 (2)N2C—C7C—C8C119.9 (2)
O3B—N1B—O4B122.0 (2)C6C—C7C—C8C115.7 (2)
O3B—N1B—C6B119.1 (2)C9C—C8C—C7C121.9 (2)
O4B—N1B—C6B118.9 (2)C9C—C8C—H8CA119.1
C7B—N2B—C10B123.3 (2)C7C—C8C—H8CA119.1
C7B—N2B—H2NB118 (2)C8C—C9C—C4C121.4 (2)
C10B—N2B—H2NB118 (2)C8C—C9C—H9CA119.3
C2B—C1B—H1BA109.5C4C—C9C—H9CA119.3
C2B—C1B—H1BB109.5N2C—C10C—C11C110.2 (2)
H1BA—C1B—H1BB109.5N2C—C10C—H10A109.6
C2B—C1B—H1BC109.5C11C—C10C—H10A109.6
H1BA—C1B—H1BC109.5N2C—C10C—H10B109.6
H1BB—C1B—H1BC109.5C11C—C10C—H10B109.6
O2B—C2B—C1B106.9 (2)H10A—C10C—H10B108.1
O2B—C2B—H2BA110.3C10C—C11C—C12C112.3 (2)
C1B—C2B—H2BA110.3C10C—C11C—H11A109.1
O2B—C2B—H2BB110.3C12C—C11C—H11A109.1
C1B—C2B—H2BB110.3C10C—C11C—H11B109.1
H2BA—C2B—H2BB108.6C12C—C11C—H11B109.1
O1B—C3B—O2B123.1 (3)H11A—C11C—H11B107.9
O1B—C3B—C4B123.8 (3)C11C—C12C—C13C112.2 (2)
O2B—C3B—C4B113.0 (2)C11C—C12C—H12A109.2
C5B—C4B—C9B118.3 (3)C13C—C12C—H12A109.2
C5B—C4B—C3B123.7 (3)C11C—C12C—H12B109.2
C9B—C4B—C3B118.0 (2)C13C—C12C—H12B109.2
C4B—C5B—C6B120.7 (3)H12A—C12C—H12B107.9
C4B—C5B—H5BA119.7C12C—C13C—H13A109.5
C6B—C5B—H5BA119.7C12C—C13C—H13B109.5
C5B—C6B—C7B122.3 (2)H13A—C13C—H13B109.5
C5B—C6B—N1B116.2 (2)C12C—C13C—H13C109.5
C7B—C6B—N1B121.5 (2)H13A—C13C—H13C109.5
N2B—C7B—C8B119.7 (3)H13B—C13C—H13C109.5
C3A—O2A—C2A—C1A−173.0 (3)C10B—N2B—C7B—C8B−5.3 (4)
C2A—O2A—C3A—O1A2.9 (4)C10B—N2B—C7B—C6B174.0 (3)
C2A—O2A—C3A—C4A−176.8 (2)C5B—C6B—C7B—N2B−179.0 (3)
O1A—C3A—C4A—C5A−175.9 (3)N1B—C6B—C7B—N2B−1.3 (4)
O2A—C3A—C4A—C5A3.8 (4)C5B—C6B—C7B—C8B0.3 (4)
O1A—C3A—C4A—C9A2.0 (5)N1B—C6B—C7B—C8B178.0 (3)
O2A—C3A—C4A—C9A−178.3 (3)N2B—C7B—C8B—C9B179.8 (3)
C9A—C4A—C5A—C6A−1.0 (4)C6B—C7B—C8B—C9B0.4 (4)
C3A—C4A—C5A—C6A176.9 (3)C7B—C8B—C9B—C4B−0.9 (5)
C4A—C5A—C6A—C7A0.0 (4)C5B—C4B—C9B—C8B0.7 (4)
C4A—C5A—C6A—N1A−177.2 (3)C3B—C4B—C9B—C8B−177.1 (3)
O3A—N1A—C6A—C5A−0.5 (4)C7B—N2B—C10B—C11B−179.5 (3)
O4A—N1A—C6A—C5A178.9 (3)N2B—C10B—C11B—C12B175.3 (2)
O3A—N1A—C6A—C7A−177.7 (3)C10B—C11B—C12B—C13B178.6 (3)
O4A—N1A—C6A—C7A1.7 (4)C3C—O2C—C2C—C1C−173.9 (3)
C10A—N2A—C7A—C8A−4.0 (4)C2C—O2C—C3C—O1C3.0 (4)
C10A—N2A—C7A—C6A175.8 (3)C2C—O2C—C3C—C4C−176.6 (2)
C5A—C6A—C7A—N2A−178.5 (3)O1C—C3C—C4C—C5C−177.1 (3)
N1A—C6A—C7A—N2A−1.4 (4)O2C—C3C—C4C—C5C2.5 (4)
C5A—C6A—C7A—C8A1.3 (4)O1C—C3C—C4C—C9C1.3 (4)
N1A—C6A—C7A—C8A178.3 (2)O2C—C3C—C4C—C9C−179.1 (2)
N2A—C7A—C8A—C9A178.2 (3)C9C—C4C—C5C—C6C1.4 (4)
C6A—C7A—C8A—C9A−1.6 (4)C3C—C4C—C5C—C6C179.8 (3)
C7A—C8A—C9A—C4A0.6 (4)C4C—C5C—C6C—C7C−0.9 (4)
C5A—C4A—C9A—C8A0.7 (4)C4C—C5C—C6C—N1C−179.5 (3)
C3A—C4A—C9A—C8A−177.3 (3)O3C—N1C—C6C—C5C5.1 (4)
C7A—N2A—C10A—C11A178.3 (3)O4C—N1C—C6C—C5C−175.6 (2)
N2A—C10A—C11A—C12A174.0 (2)O3C—N1C—C6C—C7C−173.6 (3)
C10A—C11A—C12A—C13A179.2 (3)O4C—N1C—C6C—C7C5.8 (4)
C3B—O2B—C2B—C1B−175.0 (3)C10C—N2C—C7C—C6C174.5 (3)
C2B—O2B—C3B—O1B1.8 (4)C10C—N2C—C7C—C8C−5.7 (4)
C2B—O2B—C3B—C4B−176.7 (2)C5C—C6C—C7C—N2C178.7 (3)
O1B—C3B—C4B—C5B−173.5 (3)N1C—C6C—C7C—N2C−2.8 (4)
O2B—C3B—C4B—C5B5.0 (4)C5C—C6C—C7C—C8C−1.2 (4)
O1B—C3B—C4B—C9B4.2 (5)N1C—C6C—C7C—C8C177.4 (2)
O2B—C3B—C4B—C9B−177.3 (3)N2C—C7C—C8C—C9C−177.1 (3)
C9B—C4B—C5B—C6B0.0 (4)C6C—C7C—C8C—C9C2.7 (4)
C3B—C4B—C5B—C6B177.7 (3)C7C—C8C—C9C—C4C−2.3 (4)
C4B—C5B—C6B—C7B−0.5 (4)C5C—C4C—C9C—C8C0.1 (4)
C4B—C5B—C6B—N1B−178.3 (3)C3C—C4C—C9C—C8C−178.4 (3)
O3B—N1B—C6B—C5B1.8 (4)C7C—N2C—C10C—C11C177.8 (3)
O4B—N1B—C6B—C5B−178.6 (3)N2C—C10C—C11C—C12C176.1 (2)
O3B—N1B—C6B—C7B−176.1 (3)C10C—C11C—C12C—C13C178.4 (2)
O4B—N1B—C6B—C7B3.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O4Ai0.89 (3)2.51 (3)3.345 (3)156 (3)
C1A—H1AA···O3Aii0.962.413.267 (3)149
N2B—H2NB···O4B0.83 (3)2.02 (3)2.637 (3)130 (3)
N2A—H2NA···O4A0.89 (3)1.97 (3)2.636 (3)131 (3)
N2C—H2NC···O4C0.82 (3)2.02 (4)2.635 (3)132 (3)
C10A—H10F···O1B0.972.583.542 (4)169

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2152).

References

  • Beaulieu, P. L., Bousquet, Y., Gauthier, J., Gilard, J., Marquis, M., McKercher, G., Pellerin, C., Valois, S. & Kukolj, G. (2004). J. Med. Chem.47, 6884–6892. [PubMed]
  • Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett.9, 1901–1906. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kilburn, J. P., Lau, J. & Jones, R. C. F. (2000). Tetrahedron Lett.41, 5419–5421.
  • Ozden, S., Atabey, D., Yildiz, S. & Goker, H. (2005). Bioorg. Med. Chem.13, 1587–1597. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett.5, 2251–2254.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography