PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1127–m1128.
Published online 2009 August 22. doi:  10.1107/S1600536809032395
PMCID: PMC2970082

trans-(Pyrimidine-2-thiol­ato-κ2 N,S)[tris­(2-amino­ethyl)amine-κ4 N,N′,N′′,N′′′]cobalt(III) chloride hexa­fluoridophosphate

Abstract

In the title compound, [Co(C4H3N2S)(C6H18N4)](Cl)PF6, the CoIII ion is coordinated by a tripod-like tetra­dentate ligand and a monoanionic N,S-bidentate ligand in an approximately octa­hedral CoN4OS geometry. The anionic S atom of the pyrimidine-2-thiol­ate (pymt) ligand is coordinated in the trans position to the primary amine N atom (Nprim) of the tris­(2-amino­ethyl)amine (tren) ligand. The crystal structure exhibits short inter­molecular N—H(...)N hydrogen bonds (N(...)N <3.2 Å), and inter­molecular N—H(...)Cl and C—H(...)F contacts, leading to the formation of an infinite two-dimensional network.

Related literature

For the synthesis and chemistry of similar tren [tren = tris­(2-amino­ethyl)amine] complexes, see: Jackson & Sargeson (1978 [triangle]); Kojima et al. (1994 [triangle]); Mitsui et al. (1976 [triangle]); Ohba & Saito (1984 [triangle]); Okamoto et al. (1990 [triangle]); Yonemura et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1127-scheme1.jpg

Experimental

Crystal data

  • [Co(C4H3N2S)(C6H18N4)](Cl)PF6
  • M r = 496.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1127-efi1.jpg
  • a = 12.7106 (17) Å
  • b = 11.326 (2) Å
  • c = 14.205 (2) Å
  • β = 112.549 (10)°
  • V = 1888.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 296 K
  • 0.45 × 0.35 × 0.20 mm

Data collection

  • Rigaku AFC-7S diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.503, T max = 0.770
  • 5201 measured reflections
  • 4342 independent reflections
  • 3416 reflections with F 2 > 2σ(F 2)
  • R int = 0.031
  • 3 standard reflections every 150 reflections intensity decay: 5.4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.174
  • S = 1.05
  • 4342 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: WinAFC (Rigaku/MSC, 2000 [triangle]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032395/su2138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032395/su2138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by Grants-in-Aid for Scientific Research C (No. 20550138) from the Japanese Society for the Promotion of Science (JSPS). The authors are grateful to Kochi University for financial support (The Kochi University President’s Discretionary Grant 2009).

supplementary crystallographic information

Comment

Cobalt(III)-tren [tren = tris(2-aminoethyl)amine] complexes with thiolate and/or thioether ligands have been investigated in view of their stereochemistry and ligand substitution reactions (Mitsui & Kimura, et al., 1976; Jackson & Sargeson et al., 1978; Ohba & Saito, et al., 1984; Okamoto, et al., 1990; Kojima, et al., 1994; Yonemura, et al., 1997). The chemistry of the aliphatic and aromatic thiolato cobalt(III) complexes has led to many interesting results concerning the features of the coordinated sulfur atoms. Although aliphatic thiolato cobalt(III)-tren complexes have been extensively investigated, aromatic thiolato complexes have not been thus far because of the difficulties involved in their preparation.

In view of our interest in the stereochemistry and spectrochemical properties of aromatic and aliphatic cobalt(III) complexes, we synthesized the title compound using the tripod-like tetradentate tren ligand to fix the remaining two cis coordination sites in the cobalt(III) complexes, as two geometrical isomers, p-(trans(Nprim,S))and t-(trans(Ntert,S)), are possible for [Co(bidentate-N,S)(tren)]-type complexes. The known cobalt(III)-tren complexes of 2-aminoethanethiolate-N,S (aet) (Sargeson et al., 1978) formed p-isomers as the major products, and those of 2-mercaptoacetate-O,S (ma) or 3-mercaptopropionate-O,S (mp) selectively formed the t-isomers (Mitsui & Kimura, et al., 1976; Jackson & Sargeson et al., 1978; Ohba & Saito, et al., 1984; Okamoto, et al.,1990; Kojima, et al., 1994; Yonemura, et al., 1997). Herein we report on the structure of a cobalt(III)-tren complex coordinated with the aromatic thiolato ligand pyrimidine-2-thiolate (pymt).

In the title compound the cobalt(III) atom is coordinated by a tripod-like tetradentate ligand and a monoanionic N,S-bidentate ligand, producing an approximately octahedral CoN4OS geometry (Fig. 1). In the present complex the anionic sulfur atom of the pymt ligand is coordinated trans to the primary amine N-atom (Nprim) of the tren ligand, with a nearly linear S1—Co1—N4 angle (170.71 (9)Å) hence the title compound is the p-isomer (trans(Nprim,S)). The known cobalt(III)-tren complex of aet shows the same systematic trend, at least in the coordination manner of the N,S-bidentate ligand. The Co—S distance (2.3187 (12) Å) is significantly longer than those observed in the Co(III)-tren complexes with aliphatic thiolato ligands: 2.239 (1) Å in t-[Co{CH3SCH(CH3)COO}(tren)]2+ (Ohba & Saito, et al., 1984), 2.236 (2) Å in t-[Co(mp)(tren)]+ and 2.232 (1) Å in t-[Co(ma)(tren)]+ (Yonemura, et al., 1997)). The Co—N4 distance (1.954 (3) Å), which is in the trans position relative to the sulfur atom, is shorter than the other Co-N(tren) distances (Co1—N5 = 1.966 (3) Å and Co1—N6 = 1.970 (3) Å). The S1-Co1-N1 angle of 72.31 (9)° is far from the ideal angle of 90°. This distortion is relaxed by the other angles in the same plane, that is, S1-Co1-N3 = 101.96 (9), and N1-Co1-N4 = 98.40 (12)°. The other bond distances and angles are similar to those in the cobalt(III)-tren complexes mentioned above.

The aromatic pymt N,S-chelate ring is almost planar and the three N,N'-chelate rings of the tren are in a gauche conformation. The gauche conformations of the two –N—CH2—CH2—NH2 chelates in the tren ligand have unsymmetrical skew forms with the λ and δ conformations, and the gauche conformation of the central –N—CH2—CH2—NH2 chelate in the tren ligand has an unsymmetrical skew form with the λ conformation.

In the crystal structure each complex cation is linked to adjacent cations through N–H···N hydrogen bonds so constructing a one-dimensional chain structure (Fig. 2 and Table 1). These chains are further bridged by ordered Cl and PF6 anions through N–H···Cl and C–H···F contacts, leading to the formation of an infinite two-dimensional network (Table 1 and Fig. 2).

Experimental

A methanolic solution of 2-pyrimidinethiol (1.12 g, 10 mmol) was adjusted to pH 8.0 with aqueous solutions of NaOH and HCl. The mixed solution was added to an aqueous solution of [CoCl2(tren)]Cl (3.11 g, 10 mmol) and stirred at 40 °C for 1 h. The reaction mixture was poured onto an SP-Sepahadex C-25 column (Na+ form, 7 cm × 7 cm) and the adsorbed band was developed with a 0.2 mol dm-3 NaCl aqueous solution. The eluted red band was concentrated to a small volume, the precipitated NaCl was filtered off and the red filtrate was added to a solution of NH4PF6 (1.1 g, 6.7 mmol). The resulting red powder was collected by filtration and recrystallized from water. A few days later red crystals of the title compoun were obtained with a yield of 1.50 g (35%). Anal. Calc. for [Co(pymt)(tren)]ClPF6 = C10H21CoN6SClPF6: C 24.18, H 4.26, N 16.92%, Found: C 24.09, H 4.24, N 17.04%.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.90 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
A view of the molecular structure of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoids.
Fig. 2.
A view along the b-axis of the crystal packing diagram of the title compound, showing the N–H···N hydrogen-bonds and N–H···Cl and C–H···F contacts as dashed ...

Crystal data

[Co(C4H3N2S)(C6H18N4)](Cl)PF6F(000) = 1008.0
Mr = 496.73Dx = 1.747 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.7106 (17) Åθ = 15.4–17.1°
b = 11.326 (2) ŵ = 1.31 mm1
c = 14.205 (2) ÅT = 296 K
β = 112.549 (10)°Prismatic, red-brown
V = 1888.7 (5) Å30.45 × 0.35 × 0.20 mm
Z = 4

Data collection

Rigaku AFC-7S diffractometerRint = 0.031
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan (North et al., 1968)h = −16→15
Tmin = 0.503, Tmax = 0.770k = −14→0
5201 measured reflectionsl = −10→18
4342 independent reflections3 standard reflections every 150 reflections
3416 reflections with F2 > 2σ(F2) intensity decay: 5.4%

Refinement

Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057w = 1/[σ2(Fo2) + (0.1106P)2 + 1.816P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.14 e Å3
4342 reflectionsΔρmin = −0.87 e Å3
237 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0077 (13)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.18778 (4)0.70419 (4)0.19018 (3)0.0308 (1)
S10.23158 (8)0.80886 (9)0.06968 (7)0.0410 (3)
N10.0476 (2)0.7685 (3)0.0930 (2)0.0372 (9)
N20.0184 (3)0.8748 (3)−0.0597 (2)0.0470 (10)
N30.3357 (2)0.6418 (3)0.2771 (2)0.0385 (8)
N40.1255 (2)0.6241 (3)0.2792 (2)0.0406 (9)
N50.1706 (2)0.5600 (3)0.1086 (2)0.0405 (9)
N60.2288 (2)0.8465 (3)0.2764 (2)0.0410 (9)
C10.0848 (3)0.8230 (3)0.0267 (2)0.0384 (10)
C2−0.0930 (4)0.8686 (4)−0.0804 (3)0.0548 (12)
C3−0.1387 (3)0.8134 (4)−0.0174 (3)0.0568 (14)
C4−0.0639 (3)0.7636 (4)0.0716 (3)0.0488 (12)
C50.3252 (3)0.5685 (3)0.3615 (2)0.0452 (11)
C60.2038 (3)0.5283 (3)0.3347 (2)0.0438 (11)
C70.3755 (3)0.5708 (4)0.2084 (3)0.0508 (12)
C80.2801 (4)0.4922 (4)0.1429 (3)0.0516 (12)
C90.4102 (3)0.7457 (4)0.3219 (3)0.0484 (11)
C100.3430 (3)0.8304 (3)0.3597 (3)0.0493 (12)
P10.35869 (9)0.19313 (10)0.36387 (9)0.0445 (3)
F10.2435 (3)0.2566 (4)0.2930 (3)0.1068 (16)
F20.4274 (5)0.2804 (3)0.3247 (6)0.142 (3)
F30.3517 (3)0.1030 (3)0.2757 (2)0.0873 (12)
F40.4707 (3)0.1283 (5)0.4302 (3)0.1148 (16)
F50.2846 (5)0.1060 (4)0.3963 (5)0.147 (3)
F60.3610 (4)0.2851 (4)0.4487 (3)0.1020 (16)
Cl10.03840 (9)0.91504 (11)0.36135 (8)0.0531 (3)
H1−0.142800.90310−0.140300.0660*
H2−0.217000.81010−0.034600.0680*
H3−0.091100.726900.116300.0590*
H40.349700.614600.423700.0540*
H50.374500.500000.373600.0540*
H60.189000.458200.292300.0530*
H70.191800.508800.396300.0530*
H80.117300.676000.324000.0490*
H90.056500.594000.241900.0490*
H100.440600.523200.248800.0610*
H110.398700.623000.165700.0610*
H120.294700.465700.084200.0610*
H130.274800.423300.181500.0610*
H140.115600.514500.114800.0490*
H150.149500.579500.042500.0490*
H160.431900.783600.270700.0580*
H170.478900.720900.377800.0580*
H180.334800.798600.420000.0590*
H190.382200.905600.377300.0590*
H200.230200.909500.238300.0490*
H210.176400.859600.303400.0490*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0335 (2)0.0386 (2)0.0257 (2)−0.0010 (2)0.0173 (2)0.0001 (2)
S10.0416 (4)0.0527 (5)0.0362 (4)−0.0043 (3)0.0232 (3)0.0054 (3)
N10.0375 (14)0.0471 (17)0.0312 (14)0.0010 (12)0.0177 (11)0.0025 (12)
N20.057 (2)0.0517 (19)0.0315 (14)0.0037 (15)0.0162 (14)0.0037 (13)
N30.0372 (14)0.0458 (16)0.0349 (14)0.0015 (12)0.0164 (12)0.0003 (13)
N40.0485 (17)0.0501 (17)0.0316 (14)−0.0057 (13)0.0246 (13)−0.0012 (12)
N50.0490 (17)0.0472 (17)0.0318 (14)−0.0058 (13)0.0226 (13)−0.0046 (12)
N60.0473 (17)0.0433 (16)0.0369 (15)−0.0022 (13)0.0211 (13)−0.0040 (13)
C10.0427 (18)0.0446 (19)0.0325 (16)−0.0017 (15)0.0194 (14)−0.0001 (14)
C20.057 (2)0.058 (2)0.041 (2)0.012 (2)0.0096 (18)−0.0013 (19)
C30.037 (2)0.070 (3)0.058 (2)0.0057 (19)0.0121 (18)−0.006 (2)
C40.044 (2)0.063 (2)0.046 (2)0.0001 (18)0.0245 (17)−0.0018 (19)
C50.054 (2)0.046 (2)0.0344 (17)0.0047 (17)0.0156 (16)0.0055 (15)
C60.059 (2)0.044 (2)0.0335 (16)−0.0009 (17)0.0235 (16)0.0045 (14)
C70.047 (2)0.066 (2)0.046 (2)0.0145 (19)0.0253 (17)−0.0033 (19)
C80.069 (2)0.049 (2)0.045 (2)0.0116 (19)0.031 (2)−0.0071 (17)
C90.0367 (18)0.058 (2)0.045 (2)−0.0066 (17)0.0094 (15)0.0031 (19)
C100.057 (2)0.043 (2)0.041 (2)−0.0059 (17)0.0112 (17)−0.0054 (16)
P10.0437 (5)0.0468 (5)0.0452 (5)0.0057 (4)0.0196 (4)0.0026 (4)
F10.084 (2)0.113 (3)0.102 (3)0.046 (2)0.012 (2)0.005 (2)
F20.170 (5)0.072 (2)0.264 (7)−0.021 (2)0.171 (5)−0.006 (3)
F30.103 (2)0.085 (2)0.073 (2)0.016 (2)0.0329 (19)−0.0226 (18)
F40.089 (2)0.148 (4)0.077 (2)0.048 (2)−0.002 (2)0.002 (2)
F50.182 (5)0.078 (2)0.265 (7)0.003 (3)0.180 (5)0.022 (3)
F60.120 (3)0.112 (3)0.073 (2)0.015 (2)0.036 (2)−0.027 (2)
Cl10.0510 (5)0.0707 (7)0.0425 (5)0.0165 (4)0.0235 (4)0.0068 (4)

Geometric parameters (Å, °)

Co1—S12.3187 (12)N4—H90.9000
Co1—N11.930 (3)N5—H150.9000
Co1—N31.944 (3)N5—H140.9000
Co1—N41.954 (3)N6—H210.9000
Co1—N51.966 (3)N6—H200.9000
Co1—N61.970 (3)C2—C31.389 (6)
Co1—C12.566 (3)C3—C41.378 (6)
S1—C11.734 (4)C5—C61.511 (5)
P1—F31.592 (3)C7—C81.504 (6)
P1—F41.557 (5)C9—C101.513 (6)
P1—F51.551 (6)C2—H10.9300
P1—F61.585 (4)C3—H20.9300
P1—F11.595 (4)C4—H30.9300
P1—F21.556 (6)C5—H50.9700
N1—C11.354 (4)C5—H40.9700
N1—C41.332 (5)C6—H60.9700
N2—C21.333 (7)C6—H70.9700
N2—C11.330 (4)C7—H100.9700
N3—C51.506 (4)C7—H110.9700
N3—C71.495 (5)C8—H130.9700
N3—C91.491 (5)C8—H120.9700
N4—C61.479 (5)C9—H160.9700
N5—C81.498 (6)C9—H170.9700
N6—C101.491 (5)C10—H190.9700
N4—H80.9000C10—H180.9700
S1—Co1—N172.31 (9)H14—N5—H15108.00
S1—Co1—N3101.96 (9)Co1—N5—H14109.00
S1—Co1—N4170.71 (9)H20—N6—H21108.00
S1—Co1—N589.62 (9)Co1—N6—H20110.00
S1—Co1—N687.67 (9)C10—N6—H21110.00
S1—Co1—C141.18 (9)Co1—N6—H21110.00
N1—Co1—N3173.92 (12)C10—N6—H20110.00
N1—Co1—N498.40 (12)Co1—C1—N147.51 (15)
N1—Co1—N591.63 (13)Co1—C1—S161.73 (10)
N1—Co1—N695.02 (13)Co1—C1—N2171.7 (3)
N1—Co1—C131.15 (12)N1—C1—N2125.2 (4)
N3—Co1—N487.33 (12)S1—C1—N1109.2 (2)
N3—Co1—N586.23 (13)S1—C1—N2125.6 (3)
N3—Co1—N686.65 (13)N2—C2—C3123.6 (4)
N3—Co1—C1143.02 (12)C2—C3—C4117.6 (4)
N4—Co1—N590.85 (13)N1—C4—C3119.5 (4)
N4—Co1—N693.09 (13)N3—C5—C6111.1 (2)
N4—Co1—C1129.54 (12)N4—C6—C5109.1 (3)
N5—Co1—N6171.69 (12)N3—C7—C8109.1 (3)
N5—Co1—C189.96 (11)N5—C8—C7109.0 (3)
N6—Co1—C193.16 (11)N3—C9—C10107.4 (3)
Co1—S1—C177.09 (11)N6—C10—C9107.8 (3)
F5—P1—F691.6 (3)N2—C2—H1118.00
F1—P1—F289.6 (3)C3—C2—H1118.00
F1—P1—F391.8 (2)C2—C3—H2121.00
F1—P1—F4178.1 (2)C4—C3—H2121.00
F1—P1—F587.7 (3)N1—C4—H3120.00
F1—P1—F685.9 (2)C3—C4—H3120.00
F2—P1—F389.8 (3)N3—C5—H5109.00
F2—P1—F490.4 (3)N3—C5—H4109.00
F2—P1—F5176.5 (4)H4—C5—H5108.00
F2—P1—F690.3 (3)C6—C5—H4109.00
F3—P1—F486.3 (2)C6—C5—H5109.00
F3—P1—F588.2 (3)N4—C6—H6110.00
F3—P1—F6177.7 (2)C5—C6—H7110.00
F4—P1—F592.2 (3)N4—C6—H7110.00
F4—P1—F696.0 (2)C5—C6—H6110.00
Co1—N1—C1101.4 (2)H6—C6—H7108.00
Co1—N1—C4139.2 (3)H10—C7—H11108.00
C1—N1—C4119.0 (3)N3—C7—H10110.00
C1—N2—C2115.1 (3)N3—C7—H11110.00
Co1—N3—C5110.3 (2)C8—C7—H10110.00
Co1—N3—C7105.5 (2)C8—C7—H11110.00
Co1—N3—C9106.6 (2)N5—C8—H12110.00
C5—N3—C7112.3 (3)N5—C8—H13110.00
C5—N3—C9109.3 (3)C7—C8—H12110.00
C7—N3—C9112.6 (3)C7—C8—H13110.00
Co1—N4—C6109.2 (2)H12—C8—H13108.00
Co1—N5—C8110.8 (2)N3—C9—H16110.00
Co1—N6—C10109.8 (2)N3—C9—H17110.00
C6—N4—H9110.00C10—C9—H16110.00
H8—N4—H9108.00C10—C9—H17110.00
Co1—N4—H8110.00H16—C9—H17108.00
C6—N4—H8110.00N6—C10—H18110.00
Co1—N4—H9110.00N6—C10—H19110.00
C8—N5—H14110.00C9—C10—H18110.00
C8—N5—H15109.00C9—C10—H19110.00
Co1—N5—H15109.00H18—C10—H19108.00
N1—Co1—S1—C1−1.46 (15)N4—Co1—N6—C1085.4 (2)
N3—Co1—S1—C1176.44 (15)C1—Co1—N6—C10−144.7 (2)
N5—Co1—S1—C190.38 (14)S1—Co1—C1—N1−177.3 (3)
N6—Co1—S1—C1−97.48 (14)N1—Co1—C1—S1177.3 (3)
S1—Co1—N1—C11.86 (19)N3—Co1—C1—S1−5.8 (2)
S1—Co1—N1—C4173.9 (4)N3—Co1—C1—N1176.9 (2)
N4—Co1—N1—C1−178.3 (2)N4—Co1—C1—S1179.46 (13)
N4—Co1—N1—C4−6.3 (4)N4—Co1—C1—N12.2 (3)
N5—Co1—N1—C1−87.2 (2)N5—Co1—C1—S1−89.47 (12)
N5—Co1—N1—C484.8 (4)N5—Co1—C1—N193.2 (2)
N6—Co1—N1—C187.8 (2)N6—Co1—C1—S182.83 (12)
N6—Co1—N1—C4−100.1 (4)N6—Co1—C1—N1−94.5 (2)
C1—Co1—N1—C4172.1 (6)Co1—S1—C1—N12.1 (2)
S1—Co1—N3—C5−179.45 (19)Co1—S1—C1—N2−175.4 (3)
S1—Co1—N3—C7−58.0 (2)Co1—N1—C1—S1−2.5 (3)
S1—Co1—N3—C962.0 (2)Co1—N1—C1—N2175.0 (3)
N4—Co1—N3—C50.4 (2)C4—N1—C1—Co1−174.1 (4)
N4—Co1—N3—C7121.9 (3)C4—N1—C1—S1−176.6 (3)
N4—Co1—N3—C9−118.2 (2)C4—N1—C1—N20.9 (6)
N5—Co1—N3—C5−90.6 (2)Co1—N1—C4—C3−170.8 (3)
N5—Co1—N3—C730.8 (2)C1—N1—C4—C30.3 (6)
N5—Co1—N3—C9150.8 (2)C2—N2—C1—S1175.8 (3)
N6—Co1—N3—C593.6 (2)C2—N2—C1—N1−1.2 (5)
N6—Co1—N3—C7−144.9 (2)C1—N2—C2—C30.4 (6)
N6—Co1—N3—C9−24.9 (2)Co1—N3—C5—C620.3 (3)
C1—Co1—N3—C5−175.55 (18)C7—N3—C5—C6−97.1 (3)
C1—Co1—N3—C7−54.1 (3)C9—N3—C5—C6137.2 (3)
C1—Co1—N3—C965.9 (3)Co1—N3—C7—C8−47.1 (4)
N1—Co1—N4—C6156.7 (2)C5—N3—C7—C873.1 (4)
N3—Co1—N4—C6−21.3 (2)C9—N3—C7—C8−163.0 (3)
N5—Co1—N4—C664.9 (2)Co1—N3—C9—C1046.4 (3)
N6—Co1—N4—C6−107.8 (2)C5—N3—C9—C10−72.8 (4)
C1—Co1—N4—C6155.58 (18)C7—N3—C9—C10161.7 (3)
S1—Co1—N5—C893.0 (2)Co1—N4—C6—C537.0 (3)
N1—Co1—N5—C8165.3 (3)Co1—N5—C8—C7−15.2 (4)
N3—Co1—N5—C8−9.0 (3)Co1—N6—C10—C927.8 (3)
N4—Co1—N5—C8−96.3 (3)N2—C2—C3—C40.6 (7)
C1—Co1—N5—C8134.2 (3)C2—C3—C4—N1−1.0 (6)
S1—Co1—N6—C10−103.9 (2)N3—C5—C6—N4−37.6 (3)
N1—Co1—N6—C10−175.9 (2)N3—C7—C8—N540.9 (4)
N3—Co1—N6—C10−1.8 (2)N3—C9—C10—N6−48.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H8···N2i0.902.503.079 (4)123
N4—H9···Cl1ii0.902.523.278 (3)142
N5—H14···Cl1ii0.902.393.287 (3)173
N5—H15···Cl1iii0.902.423.273 (3)160
N6—H21···Cl10.902.293.187 (3)173
C6—H6···F10.972.393.210 (6)143
C7—H11···F4iv0.972.523.328 (6)141
C9—H17···F6v0.972.523.454 (6)161

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2138).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jackson, W. G. & Sargeson, A. M. (1978). Inorg. Chem.17, 2165–2169.
  • Kojima, M., Shimizu, Y., Nakajima, K. & Yoshikawa, Y. (1994). Bull. Chem. Soc. Jpn, 67, 869–872.
  • Mitsui, Y., Watanabe, J., Harada, Y., Sakamaki, T., Kushi, Y. & Kimura, E. (1976). J. Chem. Soc. Dalton Trans. pp. 2095–2102.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ohba, S. & Saito, Y. (1984). Acta Cryst. C40, 398–401.
  • Okamoto, K., Konno, T. & Hidaka, J. (1990). Acta Cryst. C46, 216–218.
  • Rigaku/MSC (2000). WinAFC Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yonemura, T., Shibuya, K., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (1997). Inorg. Chim. Acta, 260, 119–128.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography