PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2125.
Published online 2009 August 8. doi:  10.1107/S1600536809030876
PMCID: PMC2970076

Ethyl 2-acetyl-3-(4-chloro­anilino)butanoate

Abstract

The title compound, C14H18ClNO3, adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups trans. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds are observed.

Related literature

For the crystal structure of ethyl 2-acetyl-3-anilinobutanoate, see: Priya et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2125-scheme1.jpg

Experimental

Crystal data

  • C14H18ClNO3
  • M r = 283.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2125-efi1.jpg
  • a = 6.9161 (2) Å
  • b = 10.1319 (3) Å
  • c = 11.4063 (3) Å
  • α = 87.511 (10)°
  • β = 80.873 (10)°
  • γ = 73.367 (2)°
  • V = 756.14 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 K
  • 0.17 × 0.14 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.958, T max = 0.972
  • 14994 measured reflections
  • 4229 independent reflections
  • 3037 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.132
  • S = 1.04
  • 4229 reflections
  • 179 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030876/ci2874sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030876/ci2874Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA–DST programme.

supplementary crystallographic information

Comment

Ethyl butanoate is commonly used as an artificial flavoring agent in alcoholic beverages, perfumery products and as a plasticizer for cellulose. The crystal structure of ethyl 2-acetyl-3-anilinobutanoate has been reported (Priya et al., 2006).

In the title molecule (Fig. 1), there are three planar subunits viz. the chlorophenyl amine (C1-C6/N7/Cl1), acetyl (C10/C11/O12/C13) and ethyl acetate (C10/C14/O15/O16/C17/C18) groups. The chlorophenyl amino ring is inclined at angles of 76.28 (9) and 3.48 (7)° to the acetyl and ethyl acetate groups, respectively, with the acetyl group at an angle of 72.9 (1)° to the ethyl acetate group. The molecule adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups, i.e. from C18—C17—O16—C14 to C10—C8—N7—C1 lie in the range 157.20 (14)-178.59 (15)°.

In the crystal structure, molecules associate into dimers through intermolecular N—H···O hydrogen bonds (Table 1). The hydrogen-bonded centrosymmetric dimers are characterized by an R22(12) ring motif (Fig. 2) (Bernstein et al., 1995).

Experimental

A mixture of acetaldehyde (22.5 ml), ethyl acetoacetate (6.3 ml) and aniline (6.5 ml) was placed in a round bottomed flask. The contents were stirred at 273 K to 278 K for about 5 h under nitrogen atmosphere. A paste-like solid was formed, which was initially washed with benzene, then chloroform and then extracted with diethyl ether. The extract allowed to evaporate at room temperature yielded the product with crystalline nature. The resulting compound was recrystallized from diethyl ether (yield 88%, m. p. 357 K).

Refinement

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Part of the crystal structur of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms other than H7 have been omitted for clarity.

Crystal data

C14H18ClNO3Z = 2
Mr = 283.74F(000) = 300
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.9161 (2) ÅCell parameters from 25 reflections
b = 10.1319 (3) Åθ = 2–29.6°
c = 11.4063 (3) ŵ = 0.26 mm1
α = 87.511 (10)°T = 293 K
β = 80.873 (10)°Block, colourless
γ = 73.367 (2)°0.17 × 0.14 × 0.11 mm
V = 756.14 (4) Å3

Data collection

Bruker SMART APEX CCD diffractometer4229 independent reflections
Radiation source: fine-focus sealed tube3037 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −9→9
Tmin = 0.958, Tmax = 0.972k = −14→13
14994 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1581P] where P = (Fo2 + 2Fc2)/3
4229 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H70.352 (3)0.086 (2)0.6502 (16)0.060 (5)*
C10.3175 (2)0.22108 (14)0.76810 (12)0.0460 (3)
C20.2162 (3)0.35445 (16)0.80981 (14)0.0591 (4)
H20.12510.41380.76600.071*
C30.2498 (3)0.39921 (17)0.91543 (15)0.0602 (4)
H30.18280.48870.94160.072*
C40.3817 (3)0.31215 (17)0.98199 (13)0.0524 (4)
C50.4832 (3)0.18015 (17)0.94306 (15)0.0572 (4)
H50.57300.12150.98800.069*
C60.4516 (2)0.13524 (16)0.83781 (14)0.0540 (4)
H60.52080.04580.81220.065*
C80.1319 (2)0.23376 (15)0.59384 (13)0.0484 (3)
H80.09950.33430.59860.058*
C9−0.0608 (3)0.1919 (2)0.63979 (19)0.0810 (6)
H9A−0.03280.09390.63250.121*
H9B−0.16630.23720.59410.121*
H9C−0.10510.21810.72170.121*
C100.2170 (2)0.18944 (13)0.46426 (12)0.0422 (3)
H100.24160.08960.45860.051*
C110.4189 (2)0.22321 (14)0.42512 (13)0.0463 (3)
C130.4247 (3)0.36782 (16)0.44036 (17)0.0616 (4)
H13A0.41740.38600.52310.092*
H13B0.31070.43070.41050.092*
H13C0.54960.37960.39730.092*
C140.0697 (2)0.25923 (14)0.37995 (12)0.0432 (3)
C17−0.0456 (3)0.23396 (18)0.20012 (14)0.0559 (4)
H17A−0.00270.31050.16180.067*
H17B−0.18810.26770.23510.067*
C18−0.0192 (3)0.1244 (2)0.11202 (17)0.0780 (6)
H18A0.12280.08950.07990.117*
H18B−0.09580.16180.04910.117*
H18C−0.06760.05100.15000.117*
Cl10.41769 (9)0.37010 (6)1.11659 (4)0.07881 (19)
N70.3003 (2)0.17272 (14)0.66007 (12)0.0573 (4)
O120.56910 (18)0.13519 (11)0.38320 (12)0.0680 (4)
O15−0.03698 (19)0.37584 (11)0.38958 (10)0.0631 (3)
O160.07863 (16)0.17534 (10)0.29170 (9)0.0495 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0517 (8)0.0423 (7)0.0411 (7)−0.0058 (6)−0.0133 (6)0.0036 (5)
C20.0749 (11)0.0443 (8)0.0519 (8)0.0033 (7)−0.0283 (8)−0.0011 (6)
C30.0746 (11)0.0474 (8)0.0547 (9)−0.0044 (8)−0.0212 (8)−0.0063 (7)
C40.0587 (9)0.0610 (9)0.0429 (7)−0.0220 (7)−0.0148 (6)0.0021 (6)
C50.0584 (9)0.0591 (9)0.0549 (9)−0.0104 (7)−0.0259 (7)0.0102 (7)
C60.0589 (9)0.0448 (8)0.0538 (8)−0.0012 (7)−0.0209 (7)0.0029 (6)
C80.0551 (9)0.0445 (7)0.0434 (7)−0.0071 (6)−0.0148 (6)0.0014 (6)
C90.0745 (13)0.1022 (16)0.0686 (12)−0.0333 (12)−0.0067 (10)0.0151 (11)
C100.0506 (8)0.0312 (6)0.0456 (7)−0.0067 (5)−0.0186 (6)−0.0019 (5)
C110.0504 (8)0.0383 (7)0.0478 (7)−0.0038 (6)−0.0150 (6)−0.0059 (6)
C130.0561 (9)0.0457 (8)0.0833 (12)−0.0162 (7)−0.0042 (8)−0.0155 (8)
C140.0468 (7)0.0388 (7)0.0446 (7)−0.0084 (6)−0.0151 (6)−0.0025 (5)
C170.0531 (9)0.0669 (10)0.0467 (8)−0.0071 (7)−0.0219 (7)−0.0042 (7)
C180.0826 (13)0.0905 (14)0.0631 (11)−0.0141 (11)−0.0310 (10)−0.0209 (10)
Cl10.0954 (4)0.0974 (4)0.0552 (3)−0.0350 (3)−0.0299 (2)−0.0060 (2)
N70.0747 (9)0.0408 (7)0.0489 (7)0.0062 (6)−0.0282 (6)−0.0037 (5)
O120.0566 (7)0.0485 (6)0.0866 (9)0.0013 (5)−0.0009 (6)−0.0141 (6)
O150.0747 (8)0.0439 (6)0.0632 (7)0.0080 (5)−0.0318 (6)−0.0089 (5)
O160.0562 (6)0.0443 (5)0.0487 (5)−0.0062 (4)−0.0232 (5)−0.0065 (4)

Geometric parameters (Å, °)

C1—N71.3802 (18)C10—C141.5173 (18)
C1—C21.397 (2)C10—C111.526 (2)
C1—C61.4002 (19)C10—H100.98
C2—C31.381 (2)C11—O121.2050 (17)
C2—H20.93C11—C131.495 (2)
C3—C41.374 (2)C13—H13A0.96
C3—H30.93C13—H13B0.96
C4—C51.376 (2)C13—H13C0.96
C4—Cl11.7457 (15)C14—O151.1995 (16)
C5—C61.372 (2)C14—O161.3282 (16)
C5—H50.93C17—O161.4562 (17)
C6—H60.93C17—C181.482 (2)
C8—N71.4617 (18)C17—H17A0.97
C8—C91.521 (3)C17—H17B0.97
C8—C101.537 (2)C18—H18A0.96
C8—H80.98C18—H18B0.96
C9—H9A0.96C18—H18C0.96
C9—H9B0.96N7—H70.854 (19)
C9—H9C0.96
N7—C1—C2123.61 (13)C11—C10—C8110.57 (11)
N7—C1—C6118.80 (13)C14—C10—H10108.5
C2—C1—C6117.51 (14)C11—C10—H10108.5
C3—C2—C1120.73 (14)C8—C10—H10108.5
C3—C2—H2119.6O12—C11—C13121.23 (15)
C1—C2—H2119.6O12—C11—C10120.56 (13)
C4—C3—C2120.30 (15)C13—C11—C10118.21 (12)
C4—C3—H3119.9C11—C13—H13A109.5
C2—C3—H3119.9C11—C13—H13B109.5
C3—C4—C5120.15 (14)H13A—C13—H13B109.5
C3—C4—Cl1119.42 (13)C11—C13—H13C109.5
C5—C4—Cl1120.43 (12)H13A—C13—H13C109.5
C6—C5—C4119.88 (14)H13B—C13—H13C109.5
C6—C5—H5120.1O15—C14—O16124.26 (13)
C4—C5—H5120.1O15—C14—C10124.71 (12)
C5—C6—C1121.43 (14)O16—C14—C10111.01 (11)
C5—C6—H6119.3O16—C17—C18108.05 (14)
C1—C6—H6119.3O16—C17—H17A110.1
N7—C8—C9113.62 (14)C18—C17—H17A110.1
N7—C8—C10105.08 (12)O16—C17—H17B110.1
C9—C8—C10112.39 (14)C18—C17—H17B110.1
N7—C8—H8108.5H17A—C17—H17B108.4
C9—C8—H8108.5C17—C18—H18A109.5
C10—C8—H8108.5C17—C18—H18B109.5
C8—C9—H9A109.5H18A—C18—H18B109.5
C8—C9—H9B109.5C17—C18—H18C109.5
H9A—C9—H9B109.5H18A—C18—H18C109.5
C8—C9—H9C109.5H18B—C18—H18C109.5
H9A—C9—H9C109.5C1—N7—C8124.19 (12)
H9B—C9—H9C109.5C1—N7—H7114.4 (12)
C14—C10—C11108.57 (12)C8—N7—H7114.5 (12)
C14—C10—C8112.08 (11)C14—O16—C17116.16 (11)
N7—C1—C2—C3−175.94 (17)C8—C10—C11—O12126.22 (15)
C6—C1—C2—C30.6 (3)C14—C10—C11—C1369.60 (16)
C1—C2—C3—C4−0.9 (3)C8—C10—C11—C13−53.73 (17)
C2—C3—C4—C50.8 (3)C11—C10—C14—O15−85.49 (18)
C2—C3—C4—Cl1−178.75 (14)C8—C10—C14—O1536.9 (2)
C3—C4—C5—C6−0.3 (3)C11—C10—C14—O1692.66 (13)
Cl1—C4—C5—C6179.17 (13)C8—C10—C14—O16−144.92 (12)
C4—C5—C6—C10.1 (3)C2—C1—N7—C8−20.5 (3)
N7—C1—C6—C5176.54 (16)C6—C1—N7—C8162.99 (15)
C2—C1—C6—C5−0.2 (3)C9—C8—N7—C1−79.5 (2)
N7—C8—C10—C14−172.73 (11)C10—C8—N7—C1157.20 (14)
C9—C8—C10—C1463.22 (17)O15—C14—O16—C172.3 (2)
N7—C8—C10—C11−51.45 (15)C10—C14—O16—C17−175.82 (12)
C9—C8—C10—C11−175.49 (13)C18—C17—O16—C14−178.59 (15)
C14—C10—C11—O12−110.45 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N7—H7···O12i0.85 (2)2.185 (19)3.0282 (17)170 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2874).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Priya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, o5367–o5368.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography