PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1115.
Published online 2009 August 22. doi:  10.1107/S1600536809032784
PMCID: PMC2970064

Bis{5-meth­oxy-2-[(1H-pyrrol-2-yl)methyl­imino­meth­yl]phenolato}zinc(II)

Abstract

The title compound, [Zn(C13H13N2O2)2], contains a Zn(II) centre, located on a twofold rotation axis, that is coordinated by two O atoms and two N atoms from two salicylal Schiff base mol­ecules. The crystal structure is stabilized by inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the importance of zinc derivatives in biological processes, see: Chen et al. (2007 [triangle]); Xiao & Xiao (2008 [triangle]); Xiao et al. (2007 [triangle], 2008 [triangle]). For related structures, see: You & Zhu (2006 [triangle]); Zhu et al. (2004 [triangle]); Qiu et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1115-scheme1.jpg

Experimental

Crystal data

  • [Zn(C13H13N2O2)2]
  • M r = 523.88
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1115-efi1.jpg
  • a = 27.210 (4) Å
  • b = 5.2239 (9) Å
  • c = 24.335 (3) Å
  • β = 137.179 (9)°
  • V = 2351.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 298 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.736, T max = 0.812
  • 8100 measured reflections
  • 2881 independent reflections
  • 2429 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.154
  • S = 1.08
  • 2881 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032784/hg2551sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032784/hg2551Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Zinc derivatives are particularly interesting owing to their essential importance in several biological processes (Xiao et al., 2008; Xiao & Xiao, 2008; Xiao et al., 2007; Chen et al., 2007). We have reported the structures of a few zinc(II) complexes (You & Zhu, 2006; Qiu et al., 2004; Zhu et al., 2004). As an extension of our work on the structural characterization of zinc compounds, we report the crystal structure of the title compound, (I), which has been determined in an attempt to understand the structural behaviour of nitrogen containing ligands.

The present X-ray single-crystal diffraction study reveals that compound (I), Bis(4-methoxysalicylidene(1H-pyrrol-2-yl)methanaminato)zinc(II), consists of a Zn(II) atom and two bidentate salicylal Schiff base ligands. As shown in Fig. 1, The central Zn atom exhibits 4-coordination by two N atoms from imine moieties and two O-anions from salicylal groups, forming a slightly distorted tetrahedron. The distortion arises from the difference between O—Zn and Zn—N (Table 1). The O1—C1 distance (1.308 (3) Å) and C2—C8 (1.425 (4) Å) are shorter than classical single C—O and C—C bonds, respectively. This suggests that electron significantly delocalized over the O1—C1—C2—C8—N1 group and the same to the O1A—C1A—C2A—C8A—N1A group. Zn1, N1, C8 and O1 almost stand in the plane of ring C1 to C6, and makes dihedral angle of 85.569 (45) ° with corresponding plane of the other half molecules.

The hydrogen-bonding interactions occur between the C—H in the CH2 group as donors and O in the salicylal moiety as acceptors (Table 1). These intermolecular hydrogen bonds construct an infinite ribbon. Interactions between the ribbons are van der Waals forces.

Experimental

0.5 mmol of zinc oxide, 1 mmol of 4-methoxysalicylaldehyde and 1 mmol of (1H-pyrrol-2-yl)methanamine were dissolved in 10 ml methanol. After 3 ml ammonia was added, the result solution was then heated to 423 K for 12 h. The reactor was cooled to room temperature at a rate of 10 K h-1. The mixture was filtered and held at room temperature for 12 d. Colorless block crystals were isolated in 41% yield.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. Uiso(H) values were set at 1.2 times Ueq(C, N) for aromatic C and N in pyrrole ring groups and 1.5 times Ueq(C) for CH3 groups.

Figures

Fig. 1.
The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Zn(C13H13N2O2)2]F(000) = 1088
Mr = 523.88Dx = 1.480 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2301 reflections
a = 27.210 (4) Åθ = 2.5–26.1°
b = 5.2239 (9) ŵ = 1.09 mm1
c = 24.335 (3) ÅT = 298 K
β = 137.179 (9)°Block, colorless
V = 2351.1 (6) Å30.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer2881 independent reflections
Radiation source: fine-focus sealed tube2429 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −36→35
Tmin = 0.736, Tmax = 0.812k = −6→6
8100 measured reflectionsl = −26→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0814P)2 + 2.3252P] where P = (Fo2 + 2Fc2)/3
2881 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.93603 (16)0.2495 (6)0.29548 (18)0.0401 (6)
C20.87592 (16)0.4163 (6)0.24129 (18)0.0398 (6)
C30.81985 (18)0.3941 (7)0.2349 (2)0.0503 (8)
H30.78020.50260.19960.060*
C40.82168 (18)0.2211 (7)0.2782 (2)0.0550 (8)
H40.78380.21050.27200.066*
C50.8813 (2)0.0602 (7)0.3317 (2)0.0490 (8)
C60.93736 (19)0.0707 (6)0.3401 (2)0.0462 (7)
H60.9763−0.04090.37540.055*
C70.9380 (2)−0.2809 (8)0.4279 (2)0.0673 (10)
H7A0.9385−0.39530.39730.101*
H7B0.9317−0.37740.45590.101*
H7C0.9830−0.18960.46630.101*
C80.86588 (16)0.6031 (6)0.19107 (18)0.0418 (7)
H80.82400.70090.15920.050*
C90.88198 (18)0.8391 (7)0.1226 (2)0.0507 (8)
H9A0.92080.95540.14490.061*
H9B0.84300.93890.10650.061*
C100.85569 (18)0.7069 (7)0.0508 (2)0.0523 (8)
C110.8621 (2)0.7591 (13)0.0026 (3)0.0938 (18)
H110.88690.89410.00660.113*
C120.8210 (3)0.5539 (14)−0.0582 (3)0.103 (2)
H120.81550.5318−0.10040.123*
C130.7934 (3)0.4069 (13)−0.0421 (3)0.103 (2)
H130.76460.2637−0.07170.124*
N10.90797 (13)0.6538 (5)0.18427 (15)0.0398 (5)
N20.81349 (18)0.4967 (6)0.02362 (19)0.0571 (8)
H20.80160.43200.04510.069*
O10.99094 (12)0.2514 (5)0.30668 (15)0.0552 (6)
O20.88016 (16)−0.1038 (6)0.37455 (17)0.0663 (7)
Zn11.00000.46424 (10)0.25000.0430 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0412 (15)0.0449 (16)0.0473 (16)−0.0004 (12)0.0366 (14)−0.0027 (13)
C20.0376 (14)0.0469 (17)0.0450 (16)−0.0015 (12)0.0334 (14)−0.0038 (13)
C30.0426 (16)0.065 (2)0.0567 (19)0.0051 (15)0.0406 (16)0.0019 (16)
C40.0501 (18)0.073 (2)0.065 (2)−0.0037 (17)0.0497 (18)−0.0036 (18)
C50.058 (2)0.0520 (18)0.0553 (19)−0.0101 (15)0.0475 (18)−0.0071 (15)
C60.0513 (18)0.0469 (17)0.0528 (18)0.0015 (14)0.0421 (16)0.0016 (14)
C70.086 (3)0.060 (2)0.067 (2)−0.011 (2)0.059 (2)0.0029 (19)
C80.0363 (14)0.0465 (16)0.0448 (16)0.0037 (12)0.0304 (14)−0.0004 (13)
C90.0515 (18)0.0459 (18)0.060 (2)−0.0014 (14)0.0424 (17)0.0043 (15)
C100.0449 (17)0.067 (2)0.0499 (18)0.0130 (15)0.0363 (16)0.0157 (16)
C110.067 (3)0.156 (5)0.081 (3)0.038 (3)0.061 (3)0.049 (3)
C120.081 (4)0.168 (6)0.059 (3)0.047 (4)0.051 (3)0.013 (3)
C130.091 (4)0.114 (5)0.060 (3)0.025 (3)0.042 (3)−0.013 (3)
N10.0355 (12)0.0458 (13)0.0423 (13)−0.0016 (10)0.0298 (11)−0.0022 (11)
N20.0605 (19)0.0552 (18)0.0486 (16)−0.0063 (13)0.0378 (16)−0.0074 (13)
O10.0481 (12)0.0674 (15)0.0712 (15)0.0150 (11)0.0504 (13)0.0210 (12)
O20.0821 (18)0.0695 (17)0.0832 (19)−0.0025 (15)0.0719 (17)0.0089 (15)
Zn10.0374 (3)0.0513 (3)0.0530 (3)0.0000.0372 (3)0.000

Geometric parameters (Å, °)

C1—O11.308 (3)C9—N11.460 (4)
C1—C61.412 (4)C9—C101.487 (5)
C1—C21.417 (4)C9—H9A0.9700
C2—C31.421 (4)C9—H9B0.9700
C2—C81.425 (4)C10—C111.333 (5)
C3—C41.360 (5)C10—N21.359 (5)
C3—H30.9300C11—C121.471 (8)
C4—C51.391 (5)C11—H110.9300
C4—H40.9300C12—C131.318 (9)
C5—O21.367 (4)C12—H120.9300
C5—C61.384 (5)C13—N21.340 (6)
C6—H60.9300C13—H130.9300
C7—O21.422 (5)N1—Zn11.983 (2)
C7—H7A0.9600N2—H20.8600
C7—H7B0.9600O1—Zn11.923 (2)
C7—H7C0.9600Zn1—O1i1.923 (2)
C8—N11.299 (4)Zn1—N1i1.983 (2)
C8—H80.9300
O1—C1—C6117.6 (3)N1—C9—H9B109.5
O1—C1—C2123.5 (3)C10—C9—H9B109.5
C6—C1—C2118.9 (3)H9A—C9—H9B108.1
C1—C2—C3117.7 (3)C11—C10—N2110.3 (4)
C1—C2—C8125.7 (3)C11—C10—C9132.7 (4)
C3—C2—C8116.6 (3)N2—C10—C9116.9 (3)
C4—C3—C2122.9 (3)C10—C11—C12104.0 (5)
C4—C3—H3118.6C10—C11—H11128.0
C2—C3—H3118.6C12—C11—H11128.0
C3—C4—C5118.8 (3)C13—C12—C11107.7 (5)
C3—C4—H4120.6C13—C12—H12126.1
C5—C4—H4120.6C11—C12—H12126.1
O2—C5—C6123.5 (3)C12—C13—N2109.2 (6)
O2—C5—C4115.5 (3)C12—C13—H13125.4
C6—C5—C4121.1 (3)N2—C13—H13125.4
C5—C6—C1120.6 (3)C8—N1—C9117.3 (3)
C5—C6—H6119.7C8—N1—Zn1120.3 (2)
C1—C6—H6119.7C9—N1—Zn1122.2 (2)
O2—C7—H7A109.5C13—N2—C10108.8 (5)
O2—C7—H7B109.5C13—N2—H2125.6
H7A—C7—H7B109.5C10—N2—H2125.6
O2—C7—H7C109.5C1—O1—Zn1125.7 (2)
H7A—C7—H7C109.5C5—O2—C7118.3 (3)
H7B—C7—H7C109.5O1—Zn1—O1i109.36 (15)
N1—C8—C2128.1 (3)O1—Zn1—N1i117.41 (10)
N1—C8—H8116.0O1i—Zn1—N1i96.71 (10)
C2—C8—H8116.0O1—Zn1—N196.71 (10)
N1—C9—C10110.7 (3)O1i—Zn1—N1117.41 (10)
N1—C9—H9A109.5N1i—Zn1—N1120.10 (15)
C10—C9—H9A109.5
O1—C1—C2—C3−180.0 (3)C2—C8—N1—C9174.4 (3)
C6—C1—C2—C30.1 (4)C2—C8—N1—Zn1−1.1 (4)
O1—C1—C2—C81.2 (5)C10—C9—N1—C8−102.9 (3)
C6—C1—C2—C8−178.8 (3)C10—C9—N1—Zn172.5 (3)
C1—C2—C3—C4−0.1 (5)C12—C13—N2—C10−0.4 (6)
C8—C2—C3—C4178.8 (3)C11—C10—N2—C131.4 (5)
C2—C3—C4—C50.7 (5)C9—C10—N2—C13178.5 (4)
C3—C4—C5—O2178.3 (3)C6—C1—O1—Zn1177.0 (2)
C3—C4—C5—C6−1.3 (5)C2—C1—O1—Zn1−3.0 (5)
O2—C5—C6—C1−178.3 (3)C6—C5—O2—C7−3.0 (5)
C4—C5—C6—C11.3 (5)C4—C5—O2—C7177.4 (3)
O1—C1—C6—C5179.4 (3)C1—O1—Zn1—O1i−119.8 (3)
C2—C1—C6—C5−0.7 (5)C1—O1—Zn1—N1i131.4 (3)
C1—C2—C8—N11.1 (5)C1—O1—Zn1—N12.4 (3)
C3—C2—C8—N1−177.8 (3)C8—N1—Zn1—O1−0.4 (3)
N1—C9—C10—C11−139.4 (4)C9—N1—Zn1—O1−175.6 (2)
N1—C9—C10—N244.4 (4)C8—N1—Zn1—O1i115.5 (2)
N2—C10—C11—C12−1.7 (4)C9—N1—Zn1—O1i−59.7 (3)
C9—C10—C11—C12−178.1 (4)C8—N1—Zn1—N1i−127.6 (3)
C10—C11—C12—C131.4 (6)C9—N1—Zn1—N1i57.2 (2)
C11—C12—C13—N2−0.6 (6)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O1ii0.972.323.291 (4)177

Symmetry codes: (ii) −x+2, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2551).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem.60, 375–379.
  • Qiu, X.-Y., Liu, Q.-X., Wang, Z.-G., Lin, Y.-S., Zeng, W.-J., Fun, H.-K. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct.219, 150–152.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008). ChemMedChem, 3, 1077–1083. [PubMed]
  • Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem.15, 3703–3710. [PubMed]
  • Xiao, Z.-P. & Xiao, H.-Y. (2008). Acta Cryst. E64, o2324. [PMC free article] [PubMed]
  • You, Z.-L. & Zhu, H.-L. (2006). Z. Anorg. Allg. Chem.632, 140–146.
  • Zhu, H.-L., Ma, J.-L. & Wang, D.-Q. (2004). Z. Anorg. Allg. Chem.630, 1317–1320.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography