PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2189.
Published online 2009 August 19. doi:  10.1107/S160053680903181X
PMCID: PMC2970062

1,2-Bis(4-nitro­benzo­yl)hydrazine

Abstract

The title mol­ecule, C14H10N4O6, crystallizes with one half-mol­ecule in the asymmetric unit; the mid-point of the N—N bond lies on an inversion centre. The nitro and amide groups are twisted with respect to the benzene ring, making dihedral angles of 14.6 (5) and 31.1 (5)°, respectively. In the crystal structure, mol­ecules are linked through N—H(...)O hydrogen bonding between the imino and carbonyl groups.

Related literature

For the biological activity of hydrazides, see: Cui et al. (2007 [triangle]); Li & Ban (2009 [triangle]). For related structures, see: Shang et al. (2005a [triangle],b [triangle]); Zhang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2189-scheme1.jpg

Experimental

Crystal data

  • C14H10N4O6
  • M r = 330.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2189-efi1.jpg
  • a = 4.7947 (6) Å
  • b = 9.8750 (11) Å
  • c = 14.9094 (17) Å
  • β = 99.05 (3)°
  • V = 697.13 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.975, T max = 0.988
  • 1364 measured reflections
  • 1364 independent reflections
  • 673 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.220
  • S = 1.10
  • 1364 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903181X/xu2587sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903181X/xu2587Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support by the Innovative and Entrepreneurial Project of Anhui Province for the Introduction of High-Level Talent (No. 2008Z038) and the Education Office of Anhui Province, China (No. KJ2007B227).

supplementary crystallographic information

Comment

Hydrazides have been demonstrated to possess excellent biological activities (Cui et al., 2007; Li & Ban, 2009). Recently a great deal of hydrazides have been synthesized and characterized (Shang et al., 2005a,b; Zhang et al., 2009; Li & Ban, 2009). We also are interested in this field of research, we report here the crystal structure of the title compound.

The molecular structure of the title compound has crystallographically imposed inversion symmetry located in the middle of the N—N bond (Fig. 1). One intermolecular hydrogen bond N—H···O is observed in the crystal structure (Table 1).

Experimental

4-Nitrobenzohydrazide (0.371 g, 2.0 mmol) and 20 ml chloroform were introduced into a round-bottomed flask at 281 K and stirred. 4-Nitrobenzoyl chloride (0.362 g, 2.0 mmol) was added to the mixture, which was stirred for 2 h at room temperature. A colourless solid product was filtered, and washed three times with ethyl ether. Crystals of the title compound suitable for X-ray structural determination was obtained by slow evaporation a methanol solution in air.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title copound, showing 30% probability displacement ellipsoids [symmetry code: (i) 2-x, -y, 1-z].

Crystal data

C14H10N4O6F(000) = 340
Mr = 330.26Dx = 1.573 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.7947 (6) Åθ = 8–12°
b = 9.8750 (11) ŵ = 0.13 mm1
c = 14.9094 (17) ÅT = 293 K
β = 99.05 (3)°Block, colorless
V = 697.13 (14) Å30.20 × 0.10 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer673 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 26.0°, θmin = 2.5°
ω/2θ scansh = −5→5
Absorption correction: ψ scan (North et al., 1968)k = 0→12
Tmin = 0.975, Tmax = 0.988l = 0→18
1364 measured reflections3 standard reflections every 200 reflections
1364 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1296P] where P = (Fo2 + 2Fc2)/3
1364 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5717 (7)−0.0146 (4)0.4016 (2)0.0940 (11)
O20.8216 (9)0.1386 (5)−0.0278 (3)0.1227 (16)
O31.2216 (11)0.2315 (5)0.0270 (3)0.1219 (15)
N11.0280 (8)0.0187 (4)0.4580 (2)0.0842 (12)
H1A1.19510.04190.44980.101*
N21.0017 (12)0.1715 (5)0.0358 (3)0.0949 (13)
C10.8102 (10)0.0176 (5)0.3890 (3)0.0794 (12)
C20.8783 (10)0.0610 (5)0.2994 (3)0.0775 (12)
C30.7163 (12)0.0022 (6)0.2224 (4)0.1007 (16)
H3A0.5823−0.06330.22970.121*
C40.7531 (11)0.0399 (6)0.1371 (3)0.0920 (15)
H4A0.63790.00470.08650.110*
C50.9622 (12)0.1304 (6)0.1272 (3)0.0897 (14)
C61.1218 (12)0.1918 (5)0.2030 (4)0.0926 (15)
H6A1.25220.25870.19520.111*
C71.0864 (12)0.1540 (5)0.2868 (3)0.0939 (15)
H7A1.20210.19030.33700.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.087 (2)0.124 (3)0.0660 (19)−0.004 (2)−0.0060 (16)0.0027 (19)
O20.140 (3)0.145 (4)0.070 (2)0.015 (3)−0.024 (2)0.009 (3)
O30.156 (4)0.117 (3)0.090 (3)−0.013 (3)0.010 (3)0.015 (2)
N10.077 (2)0.102 (3)0.065 (2)−0.004 (2)−0.0141 (18)0.012 (2)
N20.117 (3)0.085 (3)0.082 (3)0.014 (3)0.009 (3)0.014 (2)
C10.086 (3)0.076 (3)0.070 (3)0.000 (2)−0.007 (2)0.003 (2)
C20.081 (3)0.079 (3)0.064 (2)0.006 (2)−0.017 (2)0.005 (2)
C30.109 (4)0.098 (4)0.080 (3)−0.017 (3)−0.029 (3)0.002 (3)
C40.099 (3)0.102 (4)0.066 (3)−0.008 (3)−0.012 (3)0.001 (3)
C50.113 (4)0.079 (3)0.070 (3)0.017 (3)−0.009 (3)0.011 (3)
C60.114 (4)0.075 (3)0.079 (3)−0.008 (3)−0.017 (3)0.005 (3)
C70.112 (4)0.079 (3)0.075 (3)−0.005 (3)−0.035 (3)0.003 (3)

Geometric parameters (Å, °)

O1—C11.229 (5)C2—C31.407 (7)
O2—N21.221 (6)C3—C41.362 (7)
O3—N21.234 (5)C3—H3A0.9300
N1—C11.346 (6)C4—C51.368 (7)
N1—N1i1.372 (7)C4—H4A0.9300
N1—H1A0.8600C5—C61.400 (7)
N2—C51.462 (6)C6—C71.340 (7)
C1—C21.488 (6)C6—H6A0.9300
C2—C71.390 (7)C7—H7A0.9300
C1—N1—N1i117.1 (5)C2—C3—H3A119.6
C1—N1—H1A121.5C3—C4—C5119.0 (5)
N1i—N1—H1A121.5C3—C4—H4A120.5
O2—N2—O3123.8 (5)C5—C4—H4A120.5
O2—N2—C5118.0 (5)C4—C5—C6120.8 (5)
O3—N2—C5118.1 (5)C4—C5—N2119.1 (5)
O1—C1—N1121.0 (4)C6—C5—N2119.8 (5)
O1—C1—C2123.5 (4)C7—C6—C5119.9 (5)
N1—C1—C2115.5 (4)C7—C6—H6A120.0
C7—C2—C3118.6 (5)C5—C6—H6A120.0
C7—C2—C1125.1 (5)C6—C7—C2120.6 (5)
C3—C2—C1116.3 (5)C6—C7—H7A119.7
C4—C3—C2120.9 (5)C2—C7—H7A119.7
C4—C3—H3A119.6
N1i—N1—C1—O10.7 (8)C3—C4—C5—N2−179.8 (5)
N1i—N1—C1—C2179.0 (5)O2—N2—C5—C410.3 (7)
O1—C1—C2—C7148.0 (5)O3—N2—C5—C4−166.2 (5)
N1—C1—C2—C7−30.3 (7)O2—N2—C5—C6−164.5 (5)
O1—C1—C2—C3−31.9 (7)O3—N2—C5—C619.0 (7)
N1—C1—C2—C3149.8 (5)C4—C5—C6—C75.5 (8)
C7—C2—C3—C4−3.0 (8)N2—C5—C6—C7−179.8 (5)
C1—C2—C3—C4176.9 (5)C5—C6—C7—C2−4.6 (8)
C2—C3—C4—C53.8 (9)C3—C2—C7—C63.4 (8)
C3—C4—C5—C6−5.0 (8)C1—C2—C7—C6−176.5 (5)

Symmetry codes: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.862.122.881 (5)147

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2587).

References

  • Cui, Z.-N., Wang, Z., Li, Y., Zhou, X.-Y., Ling, Y. & Yang, X.-L. (2007). Chin. J. Org. Chem.27, 1300–1304.
  • Enraf–Nonius. (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Shang, J., Wang, Q.-M., Huang, R.-Q., Chen, L., Song, H.-B. & Mao, C.-H. (2005a). Acta Cryst. E61, o1043–o1045.
  • Shang, J., Wang, Q.-M., Song, H.-B., Huang, R.-Q., Chen, L. & Mao, C.-H. (2005b). Acta Cryst. E61, o936–o938.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography