PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1141.
Published online 2009 August 29. doi:  10.1107/S1600536809033820
PMCID: PMC2970059

Diaqua­(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca­ne)nickel(II) tetra­cyanidonickelate(II)

Abstract

In the title complex, [Ni(C16H36N4)(H2O)2][Ni(CN)4], the [Ni(teta)(H2O)2]2+ cations (teta = 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca­ne) and [Ni(CN)4]2− anions are arranged in an alternating fashion through electrostatic and N—H(...)N and O—H(...)N hydrogen-bonding inter­actions, forming a two-dimensional layered structure. Adjacent layers are linked through weak van der Waals inter­actions, resulting in a three-dimensional supra­molecular network.

Related literature

For background to cyanide-bridged complexes, see: Lescouëzec et al. (2005 [triangle]); Liu et al. (2008 [triangle]); Xu et al. (2009 [triangle]). For related structures, see: Jiang et al. (2005 [triangle], 2007 [triangle]); Ni et al. (2008 [triangle]); Yamada & Iwasaki (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1141-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H36N4)(H2O)2][Ni(CN)4]
  • M r = 542.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1141-efi1.jpg
  • a = 8.065 (8) Å
  • b = 13.255 (12) Å
  • c = 13.559 (10) Å
  • β = 116.59 (4)°
  • V = 1296 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 173 K
  • 0.58 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.808, T max = 0.888
  • 9778 measured reflections
  • 2530 independent reflections
  • 1576 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.093
  • S = 1.01
  • 2530 reflections
  • 163 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033820/at2863sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033820/at2863Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Jiangsu Province (BK2009196) and the Foundation of the State Key Laboratory of Coordination Chemistry (China) for financial support.

supplementary crystallographic information

Comment

In the past decades, there has been a continuous interest in the utilization of cyano-containing building blocks for constructing either ion-paired or cyano-bridged assemblies due to their potential applications and intriguing architectures (Lescouëzec et al., 2005; Liu et al., 2008; Xu et al., 2009). It has been found that cyano-bridged bimetallic assemblies, derived from tailored cyanometalate entities [MLp(CN)q]n- (L = polydentate ligand) and unsaturated coordinated complex [M'(L)]m+, possess extraordinarily excellent magnetic properties such as SMM (single molecular magnets) and SCM (single chain magnets). Recently, we had expected to obtain such low-dimensional system using [Cr(salen)(CN)2]- (Yamada et al., 1969; Ni et al., 2008) and [Ni(teta)]2+ as the building blocks. However, an unexpected tetracyanonickel(II)-based complex of [Ni(teta)(H2O)2][Ni(CN)4] instead of any [Cr(salen)(CN)2]--based complex was obtained. So far, Jiang et al. (Jiang et al., 2005; 2007) have reported several complexes based on the direct assembly of [Ni(CN)4]2- and [Ni(teta)]2+ building blocks, and they found that all these complexes showed cyano-bridged structures. In contrast to these reported complexes, the title complex of [Ni(teta)(H2O)2][Ni(CN)4] is ion-paired and its crystal structure is reported here.

The title complex consists of [Ni(teta)(H2O)2]2+ cation and [Ni(CN)4]2- anion (Fig. 1). In [Ni(teta)(H2O)2]2+ cation, the NiII ion assumes a distorted octahedral coordination geometry, in which the equatorial sites are occupied by four nitrogen atoms of the macrocyclic ligand teta with the Ni(2)—N bond distances of 2.067 (3) and 2.100 (3) Å, while the axial positions are occupied by two oxygen atoms of water molecules with Ni(2)—O distance of 2.183 (2) Å. As usual, [Ni(CN)4]2- anion exhibits a square planar structure, where all four cyano groups are terminal ones, with Ni(1)—C(1) and Ni(1)—C(2) distances of 1.862 (3) and 1.869 (3) Å, respectively. The Ni(1)—C—N bonds deviate slightly from linearity with the bond angles 177.2 (3) and 178.1 (3)°. [Ni(teta)(H2O)2]2+ and [Ni(CN)4]2- are arranged in an alternating fashion, forming a two-dimensional layered structure through electrostatic and hydrogen bonding interactions (Fig. 2). Furthermore, adjacent layers are linked through weak van der Waals interactions, resulting in a three-dimensional supramolecular network (Fig. 3).

Experimental

A solution of Ni(teta)(ClO4)2 (0.05 mmol) in DMF (10 ml) was added to a solution of K[Cr(salen)(CN)2].H2O (0.05 mmol) in MeOH/H2O (1/1(V/V),10 ml) mixture. The resulting solution was filtrated and the filtrate was left to allow slow evaporation in dark at room temperature. Pink prism crystals of the title complex were obtained after two weeks, washed with MeOH and H2O, respectively, and dried in air. Anal. Calc. for C20H40Ni2N8O2: C, 44.32; H, 7.44; N, 20.68; Ni, 21.66%. Found: C, 44.28; H, 7.49; N, 20.71; Ni, 21.52%.

Refinement

All non-H atoms were refined anisotropically. The C(H) atoms of the teta ligands were placed incalculated position [C-H = 0.99 Å or 0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). The N(H) atoms were located from the difference Fourier maps, and refined as riding with Uiso(H) = 1.2Ueq(N). The O(H) atoms of the coordinated water molecules were located in a difference Fourier map and refined as riding [O-H = 0.84 Å], with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
ORTEP view of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
Fig. 2.
Projection of the title complex viewed from the a-axis, showing the two-dimensional structure. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, -y-0.5, z+0.5; (ii) -x, y+0.5, -z+0.5.
Fig. 3.
The three-dimensional supramolecular network of the title complex.

Crystal data

[Ni(C16H36N4)(H2O)2][Ni(CN)4]F(000) = 576
Mr = 542.02Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4392 reflections
a = 8.065 (8) Åθ = 2.3–26.0°
b = 13.255 (12) ŵ = 1.48 mm1
c = 13.559 (10) ÅT = 173 K
β = 116.59 (4)°Prism, pink
V = 1296 (2) Å30.58 × 0.16 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer1576 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −9→9
Tmin = 0.808, Tmax = 0.888k = −16→15
9778 measured reflectionsl = −16→16
2530 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3
2530 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.73 e Å3
2 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.00000.00000.02563 (16)
Ni20.00000.00000.50000.02354 (15)
O10.1715 (3)0.08968 (15)0.44654 (15)0.0298 (5)
H1A0.153 (5)0.1515 (9)0.449 (3)0.045*
H1B0.146 (4)0.086 (2)0.3803 (10)0.045*
N1−0.1059 (5)−0.2055 (2)0.0474 (2)0.0537 (8)
N20.0522 (4)0.0799 (2)0.2194 (2)0.0477 (7)
N3−0.1760 (3)−0.02613 (18)0.33256 (18)0.0278 (6)
H3−0.120 (4)0.012 (2)0.303 (2)0.033*
N40.1362 (3)−0.12904 (18)0.49057 (19)0.0282 (6)
H40.097 (4)−0.176 (2)0.513 (2)0.034*
C1−0.0637 (4)−0.1267 (2)0.0321 (2)0.0358 (7)
C20.0293 (4)0.0502 (2)0.1355 (2)0.0321 (7)
C3−0.4969 (4)−0.0695 (3)0.3047 (2)0.0441 (8)
H3A−0.5060−0.13290.26550.066*
H3B−0.6212−0.04100.28060.066*
H3C−0.4408−0.08230.38420.066*
C4−0.3767 (4)0.0051 (2)0.2793 (2)0.0368 (8)
C5−0.4462 (5)0.0123 (3)0.1536 (3)0.0538 (10)
H5A−0.37790.06540.13710.081*
H5B−0.57880.02830.11810.081*
H5C−0.4261−0.05240.12560.081*
C6−0.1359 (4)−0.1309 (2)0.3117 (2)0.0368 (8)
H6A−0.1808−0.14160.23160.044*
H6B−0.2009−0.17910.33820.044*
C70.0699 (4)−0.1490 (2)0.3712 (2)0.0348 (7)
H7A0.0977−0.21970.36010.042*
H7B0.1344−0.10390.34130.042*
C80.4289 (5)−0.2269 (3)0.5442 (3)0.0530 (10)
H8A0.3772−0.28380.56740.080*
H8B0.5634−0.22420.59010.080*
H8C0.4023−0.23550.46680.080*
C90.3411 (4)−0.1285 (2)0.5574 (2)0.0348 (7)
H90.3932−0.07130.53190.042*
C100.3891 (4)−0.1115 (2)0.6794 (2)0.0412 (8)
H10A0.3070−0.15580.69690.049*
H10B0.5175−0.13580.72380.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0380 (3)0.0219 (3)0.0229 (3)−0.0001 (2)0.0188 (2)0.0007 (2)
Ni20.0290 (3)0.0228 (3)0.0216 (3)0.0012 (2)0.0138 (2)0.0004 (2)
O10.0416 (12)0.0258 (12)0.0265 (10)0.0003 (11)0.0195 (9)−0.0004 (10)
N10.093 (2)0.0286 (16)0.069 (2)−0.0054 (17)0.0625 (19)−0.0004 (15)
N20.078 (2)0.0434 (17)0.0344 (14)−0.0084 (16)0.0364 (15)−0.0043 (13)
N30.0293 (14)0.0323 (15)0.0234 (12)−0.0030 (11)0.0134 (11)0.0006 (10)
N40.0342 (15)0.0242 (14)0.0339 (13)0.0020 (12)0.0221 (11)0.0032 (11)
C10.052 (2)0.0330 (19)0.0348 (16)0.0011 (16)0.0302 (16)−0.0012 (14)
C20.0469 (19)0.0269 (18)0.0293 (15)0.0004 (15)0.0232 (14)0.0052 (13)
C30.0329 (18)0.058 (2)0.0374 (17)−0.0086 (17)0.0117 (14)0.0059 (16)
C40.0325 (17)0.046 (2)0.0281 (15)−0.0030 (16)0.0100 (13)0.0061 (14)
C50.048 (2)0.076 (3)0.0265 (16)−0.0072 (19)0.0068 (15)0.0096 (17)
C60.052 (2)0.0327 (19)0.0296 (15)−0.0100 (16)0.0220 (15)−0.0087 (14)
C70.049 (2)0.0287 (18)0.0381 (17)0.0009 (15)0.0300 (15)−0.0054 (13)
C80.052 (2)0.042 (2)0.078 (3)0.0205 (17)0.040 (2)0.0140 (18)
C90.0366 (18)0.0316 (18)0.0446 (17)0.0071 (15)0.0258 (15)0.0087 (14)
C100.0329 (18)0.048 (2)0.0398 (17)0.0071 (16)0.0133 (14)0.0166 (15)

Geometric parameters (Å, °)

Ni1—C11.863 (4)C3—H3B0.9800
Ni1—C1i1.863 (4)C3—H3C0.9800
Ni1—C2i1.867 (3)C4—C10ii1.537 (5)
Ni1—C21.867 (3)C4—C51.541 (4)
Ni2—N42.067 (3)C5—H5A0.9800
Ni2—N4ii2.067 (3)C5—H5B0.9800
Ni2—N3ii2.099 (3)C5—H5C0.9800
Ni2—N32.099 (3)C6—C71.505 (4)
Ni2—O1ii2.179 (2)C6—H6A0.9900
Ni2—O12.179 (2)C6—H6B0.9900
O1—H1A0.835 (10)C7—H7A0.9900
O1—H1B0.830 (10)C7—H7B0.9900
N1—C11.146 (4)C8—C91.532 (4)
N2—C21.137 (3)C8—H8A0.9800
N3—C61.482 (4)C8—H8B0.9800
N3—C41.505 (4)C8—H8C0.9800
N3—H30.88 (3)C9—C101.538 (4)
N4—C71.484 (4)C9—H91.0000
N4—C91.487 (4)C10—C4ii1.537 (5)
N4—H40.81 (3)C10—H10A0.9900
C3—C41.528 (4)C10—H10B0.9900
C3—H3A0.9800
C1—Ni1—C1i180.0 (2)H3B—C3—H3C109.5
C1—Ni1—C2i88.96 (13)N3—C4—C3111.6 (3)
C1i—Ni1—C2i91.04 (13)N3—C4—C10ii108.0 (2)
C1—Ni1—C291.04 (13)C3—C4—C10ii111.1 (3)
C1i—Ni1—C288.96 (13)N3—C4—C5109.2 (3)
C2i—Ni1—C2180.0 (3)C3—C4—C5109.6 (3)
N4—Ni2—N4ii180.00 (14)C10ii—C4—C5107.2 (3)
N4—Ni2—N3ii94.74 (10)C4—C5—H5A109.5
N4ii—Ni2—N3ii85.26 (10)C4—C5—H5B109.5
N4—Ni2—N385.26 (10)H5A—C5—H5B109.5
N4ii—Ni2—N394.74 (10)C4—C5—H5C109.5
N3ii—Ni2—N3180.0H5A—C5—H5C109.5
N4—Ni2—O1ii90.18 (10)H5B—C5—H5C109.5
N4ii—Ni2—O1ii89.82 (10)N3—C6—C7109.3 (2)
N3ii—Ni2—O1ii87.30 (10)N3—C6—H6A109.8
N3—Ni2—O1ii92.70 (10)C7—C6—H6A109.8
N4—Ni2—O189.82 (10)N3—C6—H6B109.8
N4ii—Ni2—O190.18 (10)C7—C6—H6B109.8
N3ii—Ni2—O192.70 (10)H6A—C6—H6B108.3
N3—Ni2—O187.30 (10)N4—C7—C6109.2 (2)
O1ii—Ni2—O1180.0N4—C7—H7A109.8
Ni2—O1—H1A112 (2)C6—C7—H7A109.8
Ni2—O1—H1B116 (2)N4—C7—H7B109.8
H1A—O1—H1B98 (3)C6—C7—H7B109.8
C6—N3—C4116.5 (2)H7A—C7—H7B108.3
C6—N3—Ni2105.14 (17)C9—C8—H8A109.5
C4—N3—Ni2122.34 (18)C9—C8—H8B109.5
C6—N3—H3105.1 (19)H8A—C8—H8B109.5
C4—N3—H3106 (2)C9—C8—H8C109.5
Ni2—N3—H399 (2)H8A—C8—H8C109.5
C7—N4—C9115.1 (2)H8B—C8—H8C109.5
C7—N4—Ni2105.86 (18)N4—C9—C8111.8 (3)
C9—N4—Ni2115.77 (19)N4—C9—C10109.4 (2)
C7—N4—H4105 (2)C8—C9—C10110.1 (3)
C9—N4—H4107 (2)N4—C9—H9108.5
Ni2—N4—H4107 (2)C8—C9—H9108.5
N1—C1—Ni1177.2 (3)C10—C9—H9108.5
N2—C2—Ni1178.0 (3)C4ii—C10—C9120.0 (2)
C4—C3—H3A109.5C4ii—C10—H10A107.3
C4—C3—H3B109.5C9—C10—H10A107.3
H3A—C3—H3B109.5C4ii—C10—H10B107.3
C4—C3—H3C109.5C9—C10—H10B107.3
H3A—C3—H3C109.5H10A—C10—H10B106.9

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···N1iii0.81 (3)2.46 (3)3.250 (4)164 (3)
N3—H3···N20.88 (3)2.34 (3)3.201 (4)167 (3)
O1—H1B···N20.83 (1)1.96 (1)2.789 (4)172 (3)
O1—H1A···N1iv0.84 (1)1.94 (1)2.775 (4)179 (3)

Symmetry codes: (iii) x, −y−1/2, z+1/2; (iv) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2863).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SMART, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Jiang, L., Feng, X. L., Su, C. Y., Chen, X. M. & Lu, T. B. (2007). Inorg. Chem.46, 2637–2644. [PubMed]
  • Jiang, L., Lu, T. B. & Feng, X. L. (2005). Inorg. Chem.44, 7056–7062. [PubMed]
  • Lescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev.249, 2691–2729.
  • Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152–m1153. [PMC free article] [PubMed]
  • Ni, Z. H., Zhang, L. F., Ge, C. H., Cui, A. L., Kou, H. Z. & Jiang, J. Z. (2008). Inorg. Chem. Commun.11, 94–96.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Y., Shen, X. P., Zhou, H., Shu, H. Q., Li, W. X. & Yuan, A. H. (2009). J. Mol. Struct.921, 341–345.
  • Yamada, S. & Iwasaki, K. (1969). Bull. Chem. Soc. Jpn, 42, 1463.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography