PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1086.
Published online 2009 August 19. doi:  10.1107/S1600536809032073
PMCID: PMC2970057

Dichloridobis(5-heptyl-1,3,4-thia­diazol-2-amine-κN 3)zinc(II)

Abstract

In the title compound, [ZnCl2(C9H17N3S)2], the ZnII atom is four-coordinated by two N atoms from two 5-heptyl-1,3,4-thia­diazol-2-amine ligands and two Cl atoms in a distorted tetra­hedral geometry. The thia­diazole rings are oriented at a dihedral angle of 84.87 (4)°. Intra­molecular N—H(...)Cl inter­actions result in the formation of two six-membered rings having envelope and planar conformations. In the crystal structure, inter­molecular N—H(...)N and N—H(...)Cl inter­actions link the mol­ecules into a three-dimensional network. π–π contacts between thia­diazole rings [centroid–centroid distance = 3.602 (1) Å] may further stabilize the structure.

Related literature

For general background to thia­diazo­les and their derivatives, see: Alzuet et al. (2003 [triangle]); Shen et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1086-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C9H17N3S)2]
  • M r = 534.94
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1086-efi1.jpg
  • a = 8.1750 (16) Å
  • b = 11.663 (2) Å
  • c = 14.666 (3) Å
  • α = 73.150 (17)°
  • β = 77.83 (2)°
  • γ = 88.81 (3)°
  • V = 1307.0 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.32 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.693, T max = 0.879
  • 5096 measured reflections
  • 4734 independent reflections
  • 3303 reflections with I > 2σ(I)
  • R int = 0.054
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.177
  • S = 1.02
  • 4734 reflections
  • 256 parameters
  • H-atom parameters constrained
  • Δρmax = 1.17 e Å−3
  • Δρmin = −1.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032073/hk2748sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032073/hk2748Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

As a series of superior ligands, thiadiazoles and their derivatives can coordinate to many metal ions with N or S atoms of the five-membered ring. In particular N,N'-linkage ligands, such as 1,3,4-thiadiazoles, are very versatile compounds that are able to bridge a wide range of inter-metallic separations through two close adjacent N donors (Alzuet et al., 2003). These complexes have received considerable attention in past few years, due to their certain antibacterial and antifungal activities (Shen et al., 2004).

In the molecule of the title compound, (Fig. 1), ZnII atom is four-coordinated by two N atoms from two 5-heptyl-[1,3,4]thiadiazol-2-ylamine ligands and two Cl atoms in a distorted tetrahedral geometry (Table 1). Rings A (S1/N1/N2/C8/C9) and B (S2/N4/N5/C10/C11) are, of course, planar and they are oriented at a dihedral angle of A/B = 84.87 (4)°. The intramolecular N-H···Cl interactions (Table 2) result in the formations of two six-membered rings C (Zn/Cl1/N1/N3/C9/H3A) and D (Zn/Cl2/N4/N6/C10/H6A). Ring C adopts envelope conformation with atom Zn displaced by -0.318 (3) Å from the plane of the other ring atoms, while ring D is planar and it is oriented with respect to the adjacent ring B at a dihedral angle of B/D = 1.08 (4)°. So, they are almost coplanar.

In the crystal structure, intermolecular N-H···N and N-H···Cl interactions (Table 2) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the thiadiazole rings, Cg2—Cg2i, [symmetry code: (i) 1 - x, 1 - y, 1 - z, where Cg2 is centroid of the ring B (S2/N4/N5/C10/C11)] may further stabilize the structure, with centroid-centroid distance of 3.602 (1) Å.

Experimental

For the preparation of the title compound, ZnCl2 ethanol solution (0.5 mmol) was slowly added into a solution of 5-heptyl-[1,3,4]thiadiazol-2-ylamine (1 mmol) in ethanol (20 ml), and then heated under reflux for 2 h. The reaction mixture was left to cool to room temperature, filtrated, and the solid was recrystallized from ethanol to give the title compound (m.p. 426 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement

H atoms were positioned geometrically, with N-H = O.86 Å (for NH2) and C-H = 0.97 and 0.96 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

[ZnCl2(C9H17N3S)2]Z = 2
Mr = 534.94F(000) = 560
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Melting point: 426 K
a = 8.1750 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.663 (2) ÅCell parameters from 25 reflections
c = 14.666 (3) Åθ = 10–14°
α = 73.150 (17)°µ = 1.32 mm1
β = 77.83 (2)°T = 294 K
γ = 88.81 (3)°Block, yellow
V = 1307.0 (5) Å30.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer3303 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
graphiteθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 0→9
Absorption correction: ψ scan (North et al., 1968)k = −14→14
Tmin = 0.693, Tmax = 0.879l = −17→17
5096 measured reflections3 standard reflections every 120 min
4734 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.177w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4734 reflectionsΔρmax = 1.17 e Å3
256 parametersΔρmin = −1.27 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.20470 (7)0.74792 (5)0.52670 (5)0.0475 (2)
Cl10.42266 (17)0.84281 (12)0.54632 (13)0.0631 (4)
Cl2−0.00212 (19)0.68349 (12)0.66162 (11)0.0612 (4)
S1−0.04746 (18)1.03689 (11)0.32771 (11)0.0531 (4)
S20.32968 (18)0.40780 (12)0.43889 (11)0.0548 (4)
N10.0979 (5)0.8621 (3)0.4239 (3)0.0457 (10)
N2−0.0286 (5)0.8113 (4)0.3960 (3)0.0487 (11)
N30.2131 (6)1.0514 (4)0.4083 (3)0.0555 (12)
H3A0.28721.01980.44070.067*
H3B0.21061.12810.38620.067*
N40.2722 (5)0.6065 (3)0.4752 (3)0.0451 (10)
N50.3971 (5)0.6318 (4)0.3912 (3)0.0523 (11)
N60.1068 (6)0.4464 (4)0.5882 (3)0.0559 (12)
H6A0.05800.49130.62220.067*
H6B0.08020.37100.60610.067*
C1−0.8999 (12)1.1163 (10)0.0104 (8)0.136 (3)
H1A−0.91421.1855−0.04150.204*
H1B−0.99891.10080.06150.204*
H1C−0.88081.0481−0.01410.204*
C2−0.7616 (13)1.1374 (11)0.0474 (8)0.139 (4)
H2B−0.79311.19020.08790.167*
H2C−0.67151.1776−0.00650.167*
C3−0.6975 (13)1.0203 (10)0.1083 (8)0.136 (3)
H3C−0.78950.97700.15930.163*
H3D−0.65780.96990.06660.163*
C4−0.5561 (9)1.0448 (6)0.1542 (5)0.0778 (19)
H4A−0.46701.09090.10260.093*
H4B−0.59791.09430.19630.093*
C5−0.4821 (8)0.9362 (5)0.2128 (5)0.0627 (15)
H5B−0.56950.89100.26610.075*
H5C−0.44180.88530.17170.075*
C6−0.3420 (8)0.9659 (5)0.2535 (5)0.0655 (16)
H6C−0.38431.01330.29720.079*
H6D−0.25801.01520.20030.079*
C7−0.2584 (7)0.8582 (5)0.3084 (5)0.0642 (16)
H7A−0.34160.81000.36270.077*
H7B−0.21890.80950.26530.077*
C8−0.1135 (7)0.8886 (4)0.3469 (4)0.0468 (12)
C90.1032 (6)0.9821 (4)0.3923 (4)0.0443 (12)
C100.2237 (6)0.4937 (4)0.5079 (4)0.0419 (11)
C110.4388 (7)0.5392 (5)0.3641 (4)0.0522 (13)
C120.5716 (8)0.5407 (7)0.2756 (5)0.0735 (19)
H12A0.57940.62040.22990.088*
H12B0.67810.52710.29530.088*
C130.5476 (8)0.4520 (6)0.2231 (4)0.0669 (17)
H13A0.43850.46150.20630.080*
H13B0.54930.37160.26630.080*
C140.6806 (9)0.4664 (7)0.1313 (5)0.082 (2)
H14A0.78920.45450.14860.098*
H14B0.68130.54780.08930.098*
C150.6560 (10)0.3794 (7)0.0742 (5)0.088 (2)
H15A0.66450.29820.11440.106*
H15B0.54380.38660.06170.106*
C160.7804 (9)0.3996 (7)−0.0220 (5)0.083 (2)
H16A0.77230.4809−0.06230.100*
H16B0.89280.3920−0.00970.100*
C170.7537 (11)0.3134 (8)−0.0773 (6)0.101 (3)
H17A0.63980.3183−0.08710.121*
H17B0.76720.2324−0.03840.121*
C180.8756 (11)0.3384 (8)−0.1771 (6)0.112 (3)
H18A0.85660.2788−0.20760.168*
H18B0.98880.3357−0.16820.168*
H18C0.85740.4164−0.21780.168*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.0495 (4)0.0276 (3)0.0700 (5)0.0037 (2)−0.0124 (3)−0.0214 (3)
Cl10.0533 (8)0.0424 (7)0.1056 (12)0.0043 (6)−0.0236 (8)−0.0354 (8)
Cl20.0691 (9)0.0387 (7)0.0739 (10)−0.0038 (6)−0.0015 (7)−0.0231 (7)
S10.0633 (9)0.0291 (6)0.0693 (10)0.0029 (6)−0.0160 (7)−0.0168 (6)
S20.0619 (9)0.0385 (7)0.0755 (10)0.0096 (6)−0.0170 (7)−0.0332 (7)
N10.051 (2)0.031 (2)0.059 (3)0.0020 (18)−0.009 (2)−0.0206 (19)
N20.051 (3)0.032 (2)0.065 (3)−0.0010 (19)−0.009 (2)−0.019 (2)
N30.061 (3)0.030 (2)0.078 (3)0.000 (2)−0.020 (2)−0.016 (2)
N40.046 (2)0.034 (2)0.059 (3)0.0023 (18)−0.012 (2)−0.019 (2)
N50.055 (3)0.043 (3)0.063 (3)−0.002 (2)−0.011 (2)−0.022 (2)
N60.067 (3)0.028 (2)0.075 (3)0.003 (2)−0.013 (3)−0.021 (2)
C10.126 (4)0.151 (5)0.134 (5)0.016 (4)−0.042 (4)−0.035 (4)
C20.137 (7)0.161 (7)0.126 (7)0.010 (6)−0.061 (6)−0.026 (6)
C30.126 (4)0.151 (5)0.134 (5)0.016 (4)−0.042 (4)−0.035 (4)
C40.089 (4)0.070 (4)0.075 (4)0.001 (3)−0.013 (3)−0.026 (3)
C50.068 (4)0.056 (4)0.067 (4)0.003 (3)−0.019 (3)−0.019 (3)
C60.074 (4)0.054 (3)0.072 (4)0.001 (3)−0.023 (3)−0.018 (3)
C70.064 (4)0.054 (3)0.080 (4)0.002 (3)−0.021 (3)−0.024 (3)
C80.051 (3)0.037 (3)0.056 (3)0.003 (2)−0.007 (3)−0.021 (2)
C90.050 (3)0.029 (2)0.054 (3)0.002 (2)−0.001 (2)−0.019 (2)
C100.044 (3)0.030 (2)0.061 (3)0.006 (2)−0.019 (3)−0.022 (2)
C110.048 (3)0.052 (3)0.068 (4)0.006 (2)−0.017 (3)−0.032 (3)
C120.066 (4)0.090 (5)0.072 (4)−0.010 (3)−0.001 (3)−0.044 (4)
C130.084 (4)0.065 (4)0.057 (4)0.008 (3)−0.008 (3)−0.032 (3)
C140.088 (5)0.093 (5)0.080 (5)0.013 (4)−0.012 (4)−0.053 (4)
C150.107 (6)0.085 (5)0.077 (5)−0.006 (4)0.008 (4)−0.051 (4)
C160.094 (5)0.073 (5)0.089 (5)0.003 (4)−0.003 (4)−0.045 (4)
C170.126 (7)0.105 (6)0.083 (5)−0.001 (5)−0.003 (5)−0.060 (5)
C180.143 (8)0.104 (6)0.086 (6)−0.002 (6)0.014 (5)−0.050 (5)

Geometric parameters (Å, °)

Zn—Cl12.2283 (16)C4—H4B0.9700
Zn—Cl22.2626 (17)C5—C61.487 (8)
Zn—N12.037 (4)C5—H5B0.9700
Zn—N42.026 (4)C5—H5C0.9700
S1—C81.747 (5)C6—C71.518 (8)
S1—C91.712 (6)C6—H6C0.9700
S2—C101.721 (5)C6—H6D0.9700
S2—C111.737 (6)C7—C81.504 (7)
N1—N21.390 (6)C7—H7A0.9700
N1—C91.339 (6)C7—H7B0.9700
N2—C81.274 (7)C11—C121.502 (8)
N3—C91.321 (6)C12—C131.495 (8)
N3—H3A0.8600C12—H12A0.9700
N3—H3B0.8600C12—H12B0.9700
N4—N51.385 (6)C13—C141.511 (9)
N4—C101.301 (6)C13—H13A0.9700
N5—C111.273 (6)C13—H13B0.9700
N6—C101.332 (7)C14—C151.530 (9)
N6—H6A0.8600C14—H14A0.9700
N6—H6B0.8600C14—H14B0.9700
C1—C21.408 (13)C15—C161.514 (9)
C1—H1A0.9600C15—H15A0.9700
C1—H1B0.9600C15—H15B0.9700
C1—H1C0.9600C16—C171.508 (9)
C2—C31.548 (13)C16—H16A0.9700
C2—H2B0.9700C16—H16B0.9700
C2—H2C0.9700C17—C181.539 (10)
C3—C41.525 (12)C17—H17A0.9700
C3—H3C0.9700C17—H17B0.9700
C3—H3D0.9700C18—H18A0.9600
C4—C51.505 (9)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
Cl1—Zn—Cl2114.97 (7)C8—C7—H7A108.6
N1—Zn—Cl1109.00 (12)C6—C7—H7A108.6
N1—Zn—Cl2106.06 (13)C8—C7—H7B108.6
N4—Zn—Cl1112.65 (12)C6—C7—H7B108.6
N4—Zn—Cl2108.05 (13)H7A—C7—H7B107.6
N4—Zn—N1105.49 (16)N2—C8—C7124.3 (5)
C9—S1—C887.9 (2)N2—C8—S1113.7 (4)
C10—S2—C1186.9 (3)C7—C8—S1121.9 (4)
N2—N1—Zn115.5 (3)N3—C9—N1124.0 (5)
C9—N1—Zn130.8 (4)N3—C9—S1123.2 (4)
C9—N1—N2112.2 (4)N1—C9—S1112.8 (4)
C8—N2—N1113.4 (4)N4—C10—N6124.4 (5)
C9—N3—H3A120.0N4—C10—S2113.5 (4)
C9—N3—H3B120.0N6—C10—S2122.1 (4)
H3A—N3—H3B120.0N5—C11—C12123.8 (5)
N5—N4—Zn115.2 (3)N5—C11—S2114.3 (4)
C10—N4—Zn132.0 (4)C12—C11—S2121.9 (4)
C10—N4—N5112.8 (4)C13—C12—C11116.6 (5)
C11—N5—N4112.5 (4)C13—C12—H12A108.1
C10—N6—H6A120.0C11—C12—H12A108.1
C10—N6—H6B120.0C13—C12—H12B108.1
H6A—N6—H6B120.0C11—C12—H12B108.1
C2—C1—H1A109.5H12A—C12—H12B107.3
C2—C1—H1B109.5C12—C13—C14112.7 (5)
H1A—C1—H1B109.5C12—C13—H13A109.0
C2—C1—H1C109.5C14—C13—H13A109.0
H1A—C1—H1C109.5C12—C13—H13B109.0
H1B—C1—H1C109.5C14—C13—H13B109.0
C1—C2—C3112.5 (10)H13A—C13—H13B107.8
C1—C2—H2B109.1C13—C14—C15113.9 (6)
C3—C2—H2B109.1C13—C14—H14A108.8
C1—C2—H2C109.1C15—C14—H14A108.8
C3—C2—H2C109.1C13—C14—H14B108.8
H2B—C2—H2C107.8C15—C14—H14B108.8
C4—C3—C2112.1 (9)H14A—C14—H14B107.7
C4—C3—H3C109.2C16—C15—C14114.3 (6)
C2—C3—H3C109.2C16—C15—H15A108.7
C4—C3—H3D109.2C14—C15—H15A108.7
C2—C3—H3D109.2C16—C15—H15B108.7
H3C—C3—H3D107.9C14—C15—H15B108.7
C5—C4—C3116.1 (7)H15A—C15—H15B107.6
C5—C4—H4A108.3C17—C16—C15113.5 (6)
C3—C4—H4A108.3C17—C16—H16A108.9
C5—C4—H4B108.3C15—C16—H16A108.9
C3—C4—H4B108.3C17—C16—H16B108.9
H4A—C4—H4B107.4C15—C16—H16B108.9
C6—C5—C4113.5 (5)H16A—C16—H16B107.7
C6—C5—H5B108.9C16—C17—C18113.1 (7)
C4—C5—H5B108.9C16—C17—H17A109.0
C6—C5—H5C108.9C18—C17—H17A109.0
C4—C5—H5C108.9C16—C17—H17B109.0
H5B—C5—H5C107.7C18—C17—H17B109.0
C5—C6—C7114.8 (5)H17A—C17—H17B107.8
C5—C6—H6C108.6C17—C18—H18A109.5
C7—C6—H6C108.6C17—C18—H18B109.5
C5—C6—H6D108.6H18A—C18—H18B109.5
C7—C6—H6D108.6C17—C18—H18C109.5
H6C—C6—H6D107.5H18A—C18—H18C109.5
C8—C7—C6114.6 (5)H18B—C18—H18C109.5
N4—Zn—N1—C9−143.6 (4)C9—S1—C8—N2−0.1 (4)
Cl1—Zn—N1—C9−22.4 (5)C9—S1—C8—C7179.6 (5)
Cl2—Zn—N1—C9102.0 (4)N2—N1—C9—N3−179.2 (4)
N4—Zn—N1—N251.9 (3)Zn—N1—C9—N315.9 (8)
Cl1—Zn—N1—N2173.1 (3)N2—N1—C9—S10.3 (5)
Cl2—Zn—N1—N2−62.5 (3)Zn—N1—C9—S1−164.6 (3)
C9—N1—N2—C8−0.3 (6)C8—S1—C9—N3179.4 (5)
Zn—N1—N2—C8167.0 (4)C8—S1—C9—N1−0.1 (4)
N1—Zn—N4—C10−116.4 (5)N5—N4—C10—N6179.1 (4)
Cl1—Zn—N4—C10124.8 (4)Zn—N4—C10—N61.5 (8)
Cl2—Zn—N4—C10−3.3 (5)N5—N4—C10—S20.8 (6)
N1—Zn—N4—N566.0 (3)Zn—N4—C10—S2−176.8 (3)
Cl1—Zn—N4—N5−52.8 (4)C11—S2—C10—N4−0.7 (4)
Cl2—Zn—N4—N5179.1 (3)C11—S2—C10—N6−179.1 (5)
C10—N4—N5—C11−0.4 (6)N4—N5—C11—C12−179.7 (5)
Zn—N4—N5—C11177.6 (4)N4—N5—C11—S2−0.1 (6)
C1—C2—C3—C4−175.8 (9)C10—S2—C11—N50.5 (4)
C2—C3—C4—C5−178.5 (7)C10—S2—C11—C12−179.9 (5)
C3—C4—C5—C6178.4 (7)N5—C11—C12—C13−148.2 (6)
C4—C5—C6—C7−176.8 (5)S2—C11—C12—C1332.2 (8)
C5—C6—C7—C8178.3 (5)C11—C12—C13—C14175.9 (6)
N1—N2—C8—C7−179.5 (5)C12—C13—C14—C15−178.1 (6)
N1—N2—C8—S10.2 (6)C13—C14—C15—C16175.3 (6)
C6—C7—C8—N2178.9 (5)C14—C15—C16—C17−179.8 (7)
C6—C7—C8—S1−0.8 (7)C15—C16—C17—C18177.3 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.862.583.374 (5)154
N3—H3B···Cl2i0.862.773.503 (5)144
N6—H6A···Cl20.862.493.289 (5)155
N6—H6B···N2ii0.862.193.018 (3)163

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2748).

References

  • Alzuet, G., Borras, J., Estevan, F. & Liu-Gonzalez, M. (2003). Inorg. Chim. Acta, 343, 56–60.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, X.-Q., Zhong, H.-J. & Zheng, H. (2004). Polyhedron, 23, 1851–1857.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography