PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2115.
Published online 2009 August 8. doi:  10.1107/S1600536809030992
PMCID: PMC2970055

5-Fluoro-2-(4-iodo­phen­yl)-3-methyl­sulfinyl-1-benzofuran

Abstract

In the title compound, C15H10FIO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane through the benzofuran fragment. The 4-iodo­phenyl ring is rotated out of the benzofuran plane by a dihedral angle of 39.4 (1)°. The crystal structure is stabilized by an inter­molecular C—H(...)O hydrogen bond and an I(...)O halogen bond [3.055 (2) Å]. The crystal structure also exhibits an inter­molecular C—H(...)π inter­action between the methyl H atom and the 4-iodo­phenyl ring of an adjacent benzofuran mol­ecule, and aromatic π–π inter­actions between the benzene rings of neighbouring benzofuran systems [centroid–centroid distance = 3.558 (3) Å].

Related literature

For the crystal structures of similar 2-(4-iodo­phen­yl)-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2008a [triangle],b [triangle]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999 [triangle]); Twyman & Allsop (1999 [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2115-scheme1.jpg

Experimental

Crystal data

  • C15H10FIO2S
  • M r = 400.19
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2115-efi1.jpg
  • a = 8.8989 (5) Å
  • b = 9.2370 (5) Å
  • c = 10.3357 (5) Å
  • α = 105.579 (1)°
  • β = 115.302 (1)°
  • γ = 101.671 (1)°
  • V = 689.08 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.48 mm−1
  • T = 273 K
  • 0.25 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle])) T min = 0.650, T max = 0.784
  • 5972 measured reflections
  • 2957 independent reflections
  • 2689 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.055
  • S = 1.09
  • 2957 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030992/vm2001sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030992/vm2001Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The benzofuran ring systems have received considerable attention in the field of their biological and pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999). This work is related to our communications on the synthesis and structures of 2-(4-iodophenyl)-3-methylsulfinyl-1-benzofuran analogues, viz. 2-(4-iodophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2008a) and 2-(4-iodophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2008b). Here we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.010 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the planes of the benzofuran and the 4-iodophenyl rings is 39.4 (1)°. The crystal packing (Fig. 2) is stabilized by an intermolecular C–H···O hydrogen bond and an I···O halogen bond (Politzer et al., 2007); the first between the methyl H atom and the S═O unit, with a C15–H15C···O2i distance of 3.238 (3) Å (Table 1), the second between the iodine atom and the oxygen of the S═O unit, i.e. an I···O distance of 3.055 (2) Å and a nearly linear C12–I···O2iii angle of 165.26 (8)°. The crystal packing (Fig. 3) also exhibits an intermolecular C–H···π interaction between the methyl H atom and the 4-bromophenyl ring of an adjacent molecule, with a C15–H15B···Cg3ii (Table 1; Cg3 is the centroid of the C9-C14 benzene ring). The further stability comes from aromatic π–π interaction between the furan and the benzene rings of the adjacent molecules, with a Cg1···Cg2iv distance of 3.558 (3) Å (Fig. 3; Cg1 and Cg2 are the centroids of the C1/C2/C7/O2/C8 furan ring and the C2-C7 benzene ring, respectively).

Experimental

The 77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-fluoro-2-(4-iodophenyl)-3-methylsulfanyl-1-benzofuran (310 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexan-ethyl acetate, 1 : 2 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 482-483 K; Rf = 0.71 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5 Ueq(C) for methyl H atoms, respectively.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C–H···O and C–I···O interactions (dotted lines) in the crystal structure of title compound. [Symmetry code: (i) - x + 2, - y + 2, - z + 1; (iii) x, y - 1, z - 1.]
Fig. 3.
C–H···π and π–π interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroids. [Symmetry code: (ii) - x + 1, - y + 1, - z; (iv) - x + 1, - y + 1, - ...

Crystal data

C15H10FIO2SZ = 2
Mr = 400.19F(000) = 388
Triclinic, P1Dx = 1.929 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8989 (5) ÅCell parameters from 4508 reflections
b = 9.2370 (5) Åθ = 2.4–27.4°
c = 10.3357 (5) ŵ = 2.48 mm1
α = 105.579 (1)°T = 273 K
β = 115.302 (1)°Block, colorless
γ = 101.671 (1)°0.25 × 0.15 × 0.10 mm
V = 689.08 (6) Å3

Data collection

Bruker SMART CCD diffractometer2957 independent reflections
Radiation source: fine-focus sealed tube2689 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.4°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2000))k = −11→11
Tmin = 0.650, Tmax = 0.784l = −13→13
5972 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.055H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0248P)2 + 0.3594P] where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.87629 (2)0.09755 (2)−0.19147 (2)0.03012 (7)
S0.81950 (8)0.77048 (7)0.37848 (7)0.02442 (13)
F0.2583 (2)0.7621 (2)0.5294 (2)0.0428 (4)
O10.4384 (2)0.3431 (2)0.1980 (2)0.0233 (4)
O20.8909 (3)0.8594 (2)0.5482 (2)0.0356 (4)
C10.6269 (3)0.6020 (3)0.3101 (3)0.0219 (5)
C20.4906 (3)0.5987 (3)0.3510 (3)0.0222 (5)
C30.4518 (3)0.7126 (3)0.4387 (3)0.0264 (5)
H30.52420.82140.49040.032*
C40.3009 (4)0.6553 (3)0.4443 (3)0.0292 (6)
C50.1882 (4)0.4941 (4)0.3707 (3)0.0310 (6)
H50.08710.46340.37830.037*
C60.2275 (3)0.3798 (3)0.2861 (3)0.0269 (5)
H60.15620.27090.23670.032*
C70.3788 (3)0.4369 (3)0.2791 (3)0.0226 (5)
C80.5907 (3)0.4480 (3)0.2194 (3)0.0220 (5)
C90.6706 (3)0.3730 (3)0.1356 (3)0.0215 (5)
C100.6734 (3)0.2185 (3)0.1215 (3)0.0254 (5)
H100.63230.16710.17240.030*
C110.7365 (3)0.1415 (3)0.0331 (3)0.0262 (5)
H110.73770.03890.02420.031*
C120.7985 (3)0.2194 (3)−0.0429 (3)0.0225 (5)
C130.7989 (3)0.3733 (3)−0.0283 (3)0.0225 (5)
H130.84100.4247−0.07860.027*
C140.7364 (3)0.4501 (3)0.0616 (3)0.0225 (5)
H140.73840.55390.07250.027*
C150.7072 (4)0.8817 (3)0.2787 (3)0.0356 (6)
H15A0.62140.89980.30760.053*
H15B0.64750.82120.16790.053*
H15C0.79290.98350.30710.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.03872 (11)0.03141 (10)0.02933 (10)0.01738 (8)0.02328 (8)0.01132 (8)
S0.0221 (3)0.0233 (3)0.0206 (3)0.0048 (2)0.0092 (3)0.0043 (2)
F0.0485 (11)0.0531 (11)0.0389 (10)0.0314 (9)0.0292 (9)0.0139 (8)
O10.0238 (9)0.0208 (8)0.0252 (9)0.0074 (7)0.0141 (7)0.0070 (7)
O20.0340 (11)0.0350 (11)0.0230 (9)0.0030 (9)0.0127 (8)0.0015 (8)
C10.0206 (12)0.0228 (12)0.0181 (11)0.0074 (10)0.0076 (10)0.0065 (10)
C20.0212 (12)0.0263 (12)0.0165 (11)0.0101 (10)0.0071 (10)0.0084 (10)
C30.0302 (13)0.0279 (13)0.0194 (12)0.0138 (11)0.0112 (11)0.0073 (10)
C40.0329 (14)0.0414 (15)0.0209 (12)0.0251 (13)0.0149 (11)0.0126 (12)
C50.0256 (13)0.0466 (16)0.0299 (14)0.0187 (12)0.0161 (12)0.0206 (13)
C60.0239 (13)0.0313 (14)0.0264 (13)0.0110 (11)0.0117 (11)0.0140 (11)
C70.0249 (12)0.0263 (12)0.0185 (11)0.0132 (10)0.0102 (10)0.0100 (10)
C80.0225 (12)0.0239 (12)0.0188 (11)0.0076 (10)0.0096 (10)0.0097 (10)
C90.0195 (12)0.0198 (11)0.0188 (11)0.0058 (9)0.0074 (10)0.0042 (9)
C100.0287 (13)0.0248 (12)0.0257 (13)0.0093 (11)0.0150 (11)0.0128 (11)
C110.0317 (14)0.0218 (12)0.0289 (13)0.0117 (11)0.0169 (11)0.0113 (11)
C120.0215 (12)0.0238 (12)0.0190 (11)0.0074 (10)0.0104 (10)0.0046 (10)
C130.0205 (12)0.0253 (12)0.0183 (11)0.0050 (10)0.0090 (10)0.0079 (10)
C140.0214 (12)0.0203 (11)0.0206 (12)0.0064 (10)0.0076 (10)0.0072 (10)
C150.0327 (15)0.0257 (14)0.0391 (16)0.0067 (12)0.0117 (13)0.0141 (12)

Geometric parameters (Å, °)

I—C122.098 (2)C6—C71.383 (3)
I—O2i3.055 (2)C6—H60.9300
S—O21.489 (2)C8—C91.463 (3)
S—C11.776 (2)C9—C141.394 (3)
S—C151.794 (3)C9—C101.402 (3)
F—C41.364 (3)C10—C111.381 (4)
O1—C71.382 (3)C10—H100.9300
O1—C81.386 (3)C11—C121.398 (3)
C1—C81.359 (3)C11—H110.9300
C1—C21.443 (3)C12—C131.387 (3)
C2—C71.395 (3)C13—C141.387 (3)
C2—C31.396 (3)C13—H130.9300
C3—C41.373 (4)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.391 (4)C15—H15B0.9600
C5—C61.384 (4)C15—H15C0.9600
C5—H50.9300
C12—I—O2i165.26 (8)C1—C8—C9134.3 (2)
O2—S—C1106.61 (11)O1—C8—C9114.9 (2)
O2—S—C15107.29 (13)C14—C9—C10119.0 (2)
C1—S—C1597.37 (12)C14—C9—C8120.6 (2)
C7—O1—C8106.13 (18)C10—C9—C8120.3 (2)
C8—C1—C2107.4 (2)C11—C10—C9121.0 (2)
C8—C1—S125.10 (19)C11—C10—H10119.5
C2—C1—S127.23 (18)C9—C10—H10119.5
C7—C2—C3119.1 (2)C10—C11—C12119.2 (2)
C7—C2—C1105.1 (2)C10—C11—H11120.4
C3—C2—C1135.9 (2)C12—C11—H11120.4
C4—C3—C2116.3 (2)C13—C12—C11120.5 (2)
C4—C3—H3121.9C13—C12—I119.62 (17)
C2—C3—H3121.9C11—C12—I119.79 (18)
F—C4—C3118.3 (2)C14—C13—C12119.9 (2)
F—C4—C5117.1 (2)C14—C13—H13120.1
C3—C4—C5124.5 (2)C12—C13—H13120.1
C6—C5—C4119.6 (2)C13—C14—C9120.5 (2)
C6—C5—H5120.2C13—C14—H14119.8
C4—C5—H5120.2C9—C14—H14119.8
C7—C6—C5116.2 (2)S—C15—H15A109.5
C7—C6—H6121.9S—C15—H15B109.5
C5—C6—H6121.9H15A—C15—H15B109.5
O1—C7—C6125.1 (2)S—C15—H15C109.5
O1—C7—C2110.6 (2)H15A—C15—H15C109.5
C6—C7—C2124.3 (2)H15B—C15—H15C109.5
C1—C8—O1110.7 (2)
O2—S—C1—C8−132.7 (2)C2—C1—C8—O10.0 (3)
C15—S—C1—C8116.8 (2)S—C1—C8—O1174.65 (16)
O2—S—C1—C240.9 (2)C2—C1—C8—C9176.3 (3)
C15—S—C1—C2−69.7 (2)S—C1—C8—C9−9.1 (4)
C8—C1—C2—C70.0 (3)C7—O1—C8—C10.0 (3)
S—C1—C2—C7−174.51 (18)C7—O1—C8—C9−177.1 (2)
C8—C1—C2—C3−179.9 (3)C1—C8—C9—C14−37.3 (4)
S—C1—C2—C35.6 (4)O1—C8—C9—C14138.8 (2)
C7—C2—C3—C4−1.4 (3)C1—C8—C9—C10146.1 (3)
C1—C2—C3—C4178.5 (3)O1—C8—C9—C10−37.8 (3)
C2—C3—C4—F179.6 (2)C14—C9—C10—C11−1.4 (4)
C2—C3—C4—C50.5 (4)C8—C9—C10—C11175.2 (2)
F—C4—C5—C6−178.4 (2)C9—C10—C11—C120.1 (4)
C3—C4—C5—C60.7 (4)C10—C11—C12—C130.8 (4)
C4—C5—C6—C7−1.0 (4)C10—C11—C12—I−175.29 (19)
C8—O1—C7—C6178.8 (2)O2i—I—C12—C13−117.3 (3)
C8—O1—C7—C20.0 (2)O2i—I—C12—C1158.8 (4)
C5—C6—C7—O1−178.5 (2)C11—C12—C13—C14−0.4 (4)
C5—C6—C7—C20.1 (4)I—C12—C13—C14175.70 (18)
C3—C2—C7—O1179.9 (2)C12—C13—C14—C9−1.0 (4)
C1—C2—C7—O10.0 (3)C10—C9—C14—C131.8 (4)
C3—C2—C7—C61.1 (4)C8—C9—C14—C13−174.8 (2)
C1—C2—C7—C6−178.8 (2)

Symmetry codes: (i) x, y−1, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O2ii0.962.423.238 (3)143
C15—H15B···Cg3iii0.962.913.554 (3)126

Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2001).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1061. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1088. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PubMed]
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett 40, 9383–9384.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography