PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2185.
Published online 2009 August 19. doi:  10.1107/S1600536809030773
PMCID: PMC2970051

N-Acetonylsaccharin

Abstract

In the title compound [systematic name: 2-(2-oxoprop­yl)-1,2-benzothia­zol-3(2H)-one 1,1-dioxide], C10H9NO4S, the benzo­thia­zole unit is essentially planar [maximum deviation = 0.0490 (9) Å for the S atom] and the oxopropyl group is inclined at an angle 75.61 (8)° with respect to its mean plane. In the crystal, mol­ecules are held together by weak inter­molecular C—H(...)O non-classical hydrogen bonds, resulting in centrosymmetric dimeric units, forming 14-membered ring systems which may be described as R 2 2(14) ring motifs. Moreover, mol­ecules lying about inversion centers show π–π inter­actions, with centroid–centroid separations between the benzene rings of 3.676 (2) Å.

Related literature

For the crystal structure of a benzothia­zine, see: Ahmad et al. (2008 [triangle]). For the biological activity of sacharine derivatives, see: Kapui et al. (2003 [triangle]); Singh et al. (2007 [triangle]); Vaccarino et al. (2007 [triangle]). For graph-set notation of ring motifs, see: Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2185-scheme1.jpg

Experimental

Crystal data

  • C10H9NO4S
  • M r = 239.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2185-efi1.jpg
  • a = 7.475 (3) Å
  • b = 8.975 (4) Å
  • c = 15.923 (7) Å
  • β = 101.028 (18)°
  • V = 1048.5 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 200 K
  • 0.12 × 0.12 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.964, T max = 0.982
  • 3984 measured reflections
  • 2382 independent reflections
  • 2106 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.110
  • S = 1.04
  • 2382 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030773/si2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030773/si2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Saccharine derivatives are extensively reported in the literature for their diverse range of biological activities like cyclooxygenase-2 (COX-2) inhibitors (Singh et al. 2007), analgesic (Vaccarino et al. 2007), human leucocyte elastase (HLE) inhibitors (Kapui et al. 2003). In continuation to our project to explore potentially biologically active derivatives of benzothiazines (Ahmad et al. 2008), we herein report the crystal structure of the title compound, (I), in this paper.

The structure of the title compound is depicted in Figure 1. The benzothiazol moiety (C1—C7/N1/S1) is essentailly planar with maximum deviation observed for S1 (0.0490 (9) Å) and the oxopropyl group (C8/C9/C10/O4) forms an angle 75.61 (8)° with the mean-plane of the former. The molecular dimensions in (I) agree with the corresponding molecular dimensions reported for a closely related compound (Ahmad et al. 2008). In the crystal structure, the molecules of (I) are held together by rather weak intermolecular C—H···O type non-classical hydrogen bonds resulting in dimeric units about inversion centers, forming fourteen membered ring systems which may be described in terms of graph set notation (Bernstein et al. 1994) as R22(14) ring motif; details are given in Table 1 and Figure 2. The molecules lying about inversion centers show π-π interactions with the separation between the centroids of the benzene rings (C1–C6) which are related by the symmetry operation: 1-x, 1-y, 1-z, is 3.676 (2) Å (Spek, 2009); with perpendicular distance being 3.354 Å and the slippage of 1.504 Å.

Experimental

Sodium saccharin (73.2 mmoles, 15.0 g) and chloroacetone (87.8 mmole, 7.0 ml) were added in a round bottom flask containing 30 ml of anhydrous DMF. The mixture was stirred under inert atmosphere for one hour at 393 K. The contents of the flask were poured in ice cold water. Brownish ppts. formed were filtered and washed with excess of water. Crystals suitable for XRD were grown in chloroform. Yield: 15.2 g, 87%; m.p. 386–387 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C). The final difference map was free of any chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Unit cell of (I) showing dimers of molecules formed by C—H···O interactions; H-atoms not involved in H-bonding interactions have been excluded.

Crystal data

C10H9NO4SF(000) = 496
Mr = 239.24Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3984 reflections
a = 7.475 (3) Åθ = 3.4–27.5°
b = 8.975 (4) ŵ = 0.31 mm1
c = 15.923 (7) ÅT = 200 K
β = 101.028 (18)°Block, colorless
V = 1048.5 (8) Å30.12 × 0.12 × 0.06 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2382 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
graphiteRint = 0.023
ω and [var phi] scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −9→9
Tmin = 0.964, Tmax = 0.982k = −8→11
3984 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0444P)2 + 0.8524P] where P = (Fo2 + 2Fc2)/3
2382 reflections(Δ/σ)max = 0.005
146 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.26215 (6)0.14487 (5)0.47133 (3)0.02833 (15)
O10.09274 (19)0.22262 (17)0.44859 (10)0.0401 (4)
O20.2659 (2)−0.00422 (16)0.44012 (10)0.0406 (4)
O30.5536 (2)0.25086 (18)0.68078 (9)0.0397 (4)
O40.1159 (2)0.30470 (18)0.66321 (11)0.0504 (4)
N10.3345 (2)0.14693 (19)0.57704 (10)0.0319 (4)
C10.7056 (3)0.3839 (2)0.53131 (12)0.0306 (4)
H10.78060.41390.58370.037*
C20.7458 (3)0.4271 (2)0.45301 (13)0.0335 (4)
H20.84820.48940.45200.040*
C30.6389 (3)0.3809 (2)0.37630 (13)0.0355 (4)
H30.67020.41130.32380.043*
C40.4873 (3)0.2911 (2)0.37500 (12)0.0317 (4)
H40.41480.25790.32270.038*
C50.4466 (2)0.2519 (2)0.45337 (12)0.0267 (4)
C60.5534 (2)0.29595 (19)0.53062 (11)0.0263 (4)
C70.4875 (3)0.2339 (2)0.60579 (12)0.0295 (4)
C80.2358 (3)0.0693 (2)0.63437 (13)0.0350 (4)
H8A0.32430.01700.67880.042*
H8B0.1557−0.00680.60140.042*
C90.1209 (3)0.1729 (2)0.67757 (13)0.0346 (4)
C100.0182 (3)0.1008 (3)0.73859 (14)0.0500 (6)
H10A0.07300.00390.75640.060*
H10B−0.10920.08670.71040.060*
H10C0.02350.16460.78900.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0268 (2)0.0309 (2)0.0263 (2)0.00255 (17)0.00270 (17)−0.00209 (17)
O10.0271 (7)0.0465 (8)0.0446 (9)0.0070 (6)0.0015 (6)0.0000 (7)
O20.0477 (9)0.0311 (7)0.0415 (8)−0.0004 (6)0.0049 (7)−0.0067 (6)
O30.0419 (8)0.0536 (9)0.0221 (7)−0.0003 (7)0.0024 (6)0.0009 (6)
O40.0612 (11)0.0388 (8)0.0582 (11)0.0046 (8)0.0288 (9)0.0006 (7)
N10.0303 (8)0.0411 (9)0.0252 (8)−0.0019 (7)0.0077 (6)−0.0004 (6)
C10.0278 (9)0.0337 (9)0.0289 (9)0.0050 (7)0.0021 (7)−0.0009 (7)
C20.0286 (9)0.0344 (10)0.0393 (11)0.0029 (8)0.0105 (8)0.0018 (8)
C30.0367 (10)0.0430 (11)0.0291 (10)0.0065 (8)0.0124 (8)0.0051 (8)
C40.0334 (9)0.0382 (10)0.0230 (9)0.0071 (8)0.0043 (7)−0.0016 (7)
C50.0251 (8)0.0287 (8)0.0259 (9)0.0051 (7)0.0040 (7)−0.0006 (7)
C60.0278 (9)0.0280 (8)0.0229 (8)0.0061 (7)0.0043 (7)−0.0008 (7)
C70.0290 (9)0.0345 (9)0.0249 (9)0.0052 (7)0.0045 (7)0.0005 (7)
C80.0389 (10)0.0345 (10)0.0330 (10)−0.0006 (8)0.0103 (8)0.0053 (8)
C90.0322 (10)0.0435 (11)0.0288 (10)−0.0055 (9)0.0075 (8)0.0006 (8)
C100.0500 (13)0.0703 (16)0.0330 (12)−0.0204 (12)0.0159 (10)−0.0010 (11)

Geometric parameters (Å, °)

S1—O21.4295 (15)C3—C41.388 (3)
S1—O11.4305 (15)C3—H30.9500
S1—N11.6667 (18)C4—C51.385 (3)
S1—C51.7485 (19)C4—H40.9500
O3—C71.211 (2)C5—C61.389 (3)
O4—C91.204 (3)C6—C71.487 (3)
N1—C71.388 (3)C8—C91.517 (3)
N1—C81.456 (2)C8—H8A0.9900
C1—C61.383 (3)C8—H8B0.9900
C1—C21.392 (3)C9—C101.496 (3)
C1—H10.9500C10—H10A0.9800
C2—C31.389 (3)C10—H10B0.9800
C2—H20.9500C10—H10C0.9800
O2—S1—O1116.35 (9)C6—C5—S1110.42 (14)
O2—S1—N1109.71 (9)C1—C6—C5120.11 (17)
O1—S1—N1110.53 (9)C1—C6—C7127.31 (17)
O2—S1—C5112.90 (9)C5—C6—C7112.55 (16)
O1—S1—C5112.22 (9)O3—C7—N1123.44 (18)
N1—S1—C592.60 (8)O3—C7—C6127.64 (18)
C7—N1—C8123.13 (17)N1—C7—C6108.91 (16)
C7—N1—S1115.29 (13)N1—C8—C9112.95 (16)
C8—N1—S1121.49 (14)N1—C8—H8A109.0
C6—C1—C2118.03 (18)C9—C8—H8A109.0
C6—C1—H1121.0N1—C8—H8B109.0
C2—C1—H1121.0C9—C8—H8B109.0
C3—C2—C1121.19 (19)H8A—C8—H8B107.8
C3—C2—H2119.4O4—C9—C10123.2 (2)
C1—C2—H2119.4O4—C9—C8121.05 (18)
C4—C3—C2121.16 (18)C10—C9—C8115.78 (19)
C4—C3—H3119.4C9—C10—H10A109.5
C2—C3—H3119.4C9—C10—H10B109.5
C5—C4—C3116.97 (18)H10A—C10—H10B109.5
C5—C4—H4121.5C9—C10—H10C109.5
C3—C4—H4121.5H10A—C10—H10C109.5
C4—C5—C6122.52 (18)H10B—C10—H10C109.5
C4—C5—S1127.07 (15)
O2—S1—N1—C7120.12 (15)C2—C1—C6—C7178.29 (17)
O1—S1—N1—C7−110.26 (15)C4—C5—C6—C10.9 (3)
C5—S1—N1—C74.66 (15)S1—C5—C6—C1−179.02 (13)
O2—S1—N1—C8−63.36 (17)C4—C5—C6—C7−177.06 (16)
O1—S1—N1—C866.26 (17)S1—C5—C6—C73.04 (19)
C5—S1—N1—C8−178.83 (15)C8—N1—C7—O31.2 (3)
C6—C1—C2—C3−1.4 (3)S1—N1—C7—O3177.61 (15)
C1—C2—C3—C40.6 (3)C8—N1—C7—C6179.96 (16)
C2—C3—C4—C50.9 (3)S1—N1—C7—C6−3.59 (19)
C3—C4—C5—C6−1.7 (3)C1—C6—C7—O31.1 (3)
C3—C4—C5—S1178.21 (14)C5—C6—C7—O3178.91 (18)
O2—S1—C5—C463.10 (19)C1—C6—C7—N1−177.59 (17)
O1—S1—C5—C4−70.77 (19)C5—C6—C7—N10.2 (2)
N1—S1—C5—C4175.78 (17)C7—N1—C8—C974.6 (2)
O2—S1—C5—C6−117.01 (13)S1—N1—C8—C9−101.65 (19)
O1—S1—C5—C6109.12 (14)N1—C8—C9—O40.4 (3)
N1—S1—C5—C6−4.32 (14)N1—C8—C9—C10−178.98 (18)
C2—C1—C6—C50.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.982.573.324 (3)134

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2191).

References

  • Ahmad, M., Siddiqui, H. L., Ahmad, S., Farooq, S. U. & Parvez, M. (2008). Acta Cryst. E64, o1213–o1214. [PMC free article] [PubMed]
  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H. -B. Bürgi & J. D. Dunitz, Vol. 2. 431–507. New York: VCH.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther.305, 1–9. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). Eur. J. Med. Chem.42, 456–462. [PubMed]
  • Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheselli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). Bioorg. Med. Chem.15, 2206–2215. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography