PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2144.
Published online 2009 August 15. doi:  10.1107/S1600536809031511
PMCID: PMC2970050

2-Chloro­benzene­sulfonamide

Abstract

In the crystal of the title compound, C6H6ClNO2S, N—H(...)O hydrogen bonds pack the mol­ecules into sheets parallel to the ac plane.

Related literature

For our studies of the effect of substituents on the solid state structures of sulfonamides and N-halo aryl­sulfonamides, see: Gowda et al. (2003 [triangle]); Gowda, Babitha et al. (2007 [triangle]); Gowda, Nayak et al. (2007 [triangle]); Gowda, Srilatha et al. (2007 [triangle]). For the parent benzene­sulfonamide, see: Gowda, Nayak et al. (2007 [triangle]). For other aryl sulfonamides, see: Gowda, Babitha et al. (2007 [triangle]); Gowda, Srilatha et al. (2007 [triangle]); Jones & Weinkauf (1993 [triangle]); Kumar et al. (1992 [triangle]); O’Connor & Maslen (1965 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2144-scheme1.jpg

Experimental

Crystal data

  • C6H6ClNO2S
  • M r = 191.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2144-efi1.jpg
  • a = 6.955 (1) Å
  • b = 14.848 (3) Å
  • c = 7.751 (1) Å
  • β = 91.51 (1)°
  • V = 800.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 299 K
  • 0.48 × 0.48 × 0.26 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.735, T max = 0.842
  • 1598 measured reflections
  • 1031 independent reflections
  • 1004 reflections with I > 2σ(I)
  • R int = 0.008

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.060
  • S = 1.03
  • 1031 reflections
  • 106 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 215 Friedel pairs
  • Flack parameter: 0.04 (8)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031511/bt5028sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031511/bt5028Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

supplementary crystallographic information

Comment

The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides and their N-halo compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. In the present work, the structure of 2-chlorobenzenesulfonamde has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda et al., 2003; Gowda, Babitha et al. 2007; Gowda, Nayak et al. 2007; Gowda, Srilatha et al. 2007). The structure of the title compound (Fig. 1) closely resembles those of the parent benzenesulfonamide (Gowda, Nayak et al., 2007) and other aryl sulfonamides (Gowda, Babitha et al., 2007; Gowda, Srilatha et al., 2007; Jones & Weinkauf, 1993; Kumar et al., 1992; O'Connor & Maslen, 1965). The title compound crystallizes in monoclinic space group Cc in contrast to the monoclinic Pc space group observed with the parent sulfonamide (Gowda et al., 2007b) and orthorhombic Pbca space group with 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965) and monoclinic P21/n space group with 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). The molecules in the title compound are packed into infinite 3-D molecular network through N1—H11···O1 and N1—H12···O2 hydrogen bonding (Table 1 & Fig.2).

Experimental

The purity of the commmercial sample (TCI, Tokyo) was checked and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in ethanol solution by a slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the NH2 group were located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C6H6ClNO2SF(000) = 392
Mr = 191.63Dx = 1.591 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1188 reflections
a = 6.955 (1) Åθ = 2.6–27.8°
b = 14.848 (3) ŵ = 0.68 mm1
c = 7.751 (1) ÅT = 299 K
β = 91.51 (1)°Prism, colourless
V = 800.2 (2) Å30.48 × 0.48 × 0.26 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector1031 independent reflections
Radiation source: fine-focus sealed tube1004 reflections with I > 2σ(I)
graphiteRint = 0.008
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −8→4
Tmin = 0.735, Tmax = 0.842k = −18→15
1598 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2306P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.041
1031 reflectionsΔρmax = 0.14 e Å3
106 parametersΔρmin = −0.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 215 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (8)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.56409 (10)0.10747 (7)0.84733 (11)0.0700 (3)
S10.18379 (8)0.20974 (3)0.98884 (8)0.03276 (14)
O1−0.0067 (3)0.22742 (12)1.0448 (3)0.0486 (5)
O20.3434 (3)0.23916 (13)1.0939 (2)0.0535 (5)
N10.2010 (4)0.25747 (15)0.8048 (3)0.0396 (5)
H110.309 (3)0.251 (2)0.755 (4)0.048*
H120.105 (4)0.249 (2)0.740 (3)0.048*
C10.1995 (4)0.09052 (15)0.9649 (3)0.0335 (5)
C20.3626 (4)0.04740 (18)0.9082 (4)0.0443 (6)
C30.3663 (6)−0.0459 (2)0.8966 (4)0.0588 (8)
H30.4755−0.07510.85820.071*
C40.2078 (7)−0.0951 (2)0.9421 (4)0.0674 (10)
H40.2106−0.15760.93410.081*
C50.0464 (6)−0.05329 (19)0.9990 (4)0.0590 (8)
H5−0.0600−0.08721.02920.071*
C60.0415 (4)0.04025 (18)1.0117 (4)0.0432 (6)
H6−0.06770.06891.05150.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0380 (4)0.0856 (6)0.0871 (6)0.0153 (4)0.0158 (4)0.0148 (5)
S10.0338 (3)0.0335 (2)0.0310 (2)−0.0015 (3)0.00213 (18)−0.0023 (2)
O10.0468 (11)0.0480 (9)0.0520 (11)0.0068 (9)0.0205 (9)−0.0043 (9)
O20.0590 (14)0.0501 (11)0.0506 (11)−0.0152 (10)−0.0172 (10)−0.0031 (9)
N10.0364 (11)0.0449 (11)0.0375 (11)0.0035 (10)0.0025 (8)0.0055 (9)
C10.0381 (12)0.0343 (10)0.0280 (11)0.0023 (11)−0.0025 (9)0.0013 (8)
C20.0478 (16)0.0476 (13)0.0374 (13)0.0118 (13)−0.0008 (12)0.0047 (11)
C30.078 (2)0.0498 (15)0.0485 (15)0.0276 (17)−0.0026 (15)0.0016 (13)
C40.116 (3)0.0360 (14)0.0497 (18)0.0069 (19)−0.0055 (19)0.0025 (12)
C50.079 (2)0.0399 (14)0.0574 (18)−0.0158 (15)−0.0058 (17)0.0052 (13)
C60.0445 (16)0.0412 (12)0.0436 (14)−0.0049 (12)−0.0026 (12)0.0022 (11)

Geometric parameters (Å, °)

Cl1—C21.737 (3)C2—C31.389 (4)
S1—O11.429 (2)C3—C41.376 (5)
S1—O21.4275 (19)C3—H30.9300
S1—N11.600 (2)C4—C51.366 (5)
S1—C11.784 (2)C4—H40.9300
N1—H110.857 (19)C5—C61.393 (4)
N1—H120.835 (18)C5—H50.9300
C1—C61.385 (4)C6—H60.9300
C1—C21.384 (4)
O1—S1—O2118.92 (13)C3—C2—Cl1118.6 (2)
O1—S1—N1106.32 (13)C4—C3—C2119.8 (3)
O2—S1—N1107.32 (12)C4—C3—H3120.1
O1—S1—C1105.88 (12)C2—C3—H3120.1
O2—S1—C1108.31 (12)C5—C4—C3120.8 (3)
N1—S1—C1109.91 (11)C5—C4—H4119.6
S1—N1—H11116 (2)C3—C4—H4119.6
S1—N1—H12113 (2)C4—C5—C6119.8 (3)
H11—N1—H12114 (3)C4—C5—H5120.1
C6—C1—C2119.8 (2)C6—C5—H5120.1
C6—C1—S1117.2 (2)C1—C6—C5119.9 (3)
C2—C1—S1123.0 (2)C1—C6—H6120.1
C1—C2—C3119.9 (3)C5—C6—H6120.1
C1—C2—Cl1121.5 (2)
O1—S1—C1—C6−3.7 (2)S1—C1—C2—Cl1−2.5 (3)
O2—S1—C1—C6124.8 (2)C1—C2—C3—C4−0.2 (4)
N1—S1—C1—C6−118.19 (19)Cl1—C2—C3—C4−179.3 (2)
O1—S1—C1—C2178.5 (2)C2—C3—C4—C5−0.1 (4)
O2—S1—C1—C2−52.9 (2)C3—C4—C5—C6−0.1 (5)
N1—S1—C1—C264.0 (2)C2—C1—C6—C5−1.0 (4)
C6—C1—C2—C30.7 (4)S1—C1—C6—C5−178.8 (2)
S1—C1—C2—C3178.4 (2)C4—C5—C6—C10.7 (4)
C6—C1—C2—Cl1179.77 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.86 (2)2.12 (2)2.908 (3)152 (3)
N1—H12···O2ii0.84 (2)2.12 (2)2.941 (3)166 (3)

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5028).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245.
  • Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  • Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.
  • Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424.
  • Jones, P. G. & Weinkauf, A. (1993). Z. Kristallogr.208, 128–129.
  • Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr.202, 1–6.
  • O’Connor, B. H. & Maslen, E. N. (1965). Acta Cryst.18, 363–366.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography