PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1126.
Published online 2009 August 22. doi:  10.1107/S1600536809033078
PMCID: PMC2970048

Tetra­aqua­bis{2-[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]acetato}manganese(II) dihydrate

Abstract

In the title compound, [Mn(C11H8N3O2S)2(H2O)4]·2H2O, the MnII ion lies on an inversion centre and is coordinated by four water mol­ecules in equatorial positions and two N atoms from two 2-[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]acetate ligands in the axial positions. The water mol­ecules, including the uncoordinated water mol­ecules, and the acetate O atoms are involved in O—H(...)O and O—H(...)N hydrogen-bonding inter­actions, which link the components into layers parallel to the a (b + c) plane.

Related literature

For hydro­(solvo)thermal reactions between (heterocyclic­thio)acetic acid and metal ions, see: Zhu et al. (2009 [triangle]); Hao et al. (2008 [triangle]); He et al. (2007 [triangle]). For a Cu(II) coordination compound with 4-(pyridin-4-yl)pyrimidine-2-sulfonate, see Li et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1126-scheme1.jpg

Experimental

Crystal data

  • [Mn(C11H8N3O2S)2(H2O)4]·2H2O
  • M r = 655.58
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1126-efi1.jpg
  • a = 8.459 (3) Å
  • b = 9.240 (3) Å
  • c = 9.360 (4) Å
  • α = 87.396 (6)°
  • β = 75.862 (5)°
  • γ = 79.872 (5)°
  • V = 698.4 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 298 K
  • 0.14 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.884, T max = 0.920
  • 4518 measured reflections
  • 3181 independent reflections
  • 2443 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.094
  • S = 0.98
  • 3181 reflections
  • 187 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033078/cv2600sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033078/cv2600Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the China Postdoctoral Research Fund (grant No. 20070411010) and the Young Teachers’ Starting Fund of Southeast University.

supplementary crystallographic information

Comment

Hydro(solvo)thermal reactions of (heterocyclicthio)acetic acid with both transition metal ions and lanthanide ions have been investigated in several reports (Zhu et al., 2009; Hao et al., 2008; He et al., 2007), wherein in situ C—S cleavage has taken place under these situations. Herein, we report a manganese (II) coordination complex with a newly synthesized (heterocyclicthio)acetic acid, namely 2-(4-(pyridine-3-yl)pyrimidin-2-ylthio)acetic acid.

As shown in Fig. 1, the coordination arrangement around Mn(II) center is similar to our previously reported Cu(II) compound with the ligand of 4-(pyridin-4-yl)pyrimidine-2-sulfonate (Li et al., 2009). The Mn(II) center also adopts an octahedral coordination geometry completed by four water O atoms in equatorial positions and two N atoms in apical positions. In the title complex, the MnII atom sits on an inversion centre with the asymmetric unit containing half of the complex and one free water molecule. The Mn—O bond lengths vary from 2.189 (2) to 2.192 (2) Å and the Mn—N bond distance is 2.276 (2) Å. Intra- and intermolecular hydrogen bonding interactions, such as O—H···O and O—H···N are observed in the crystal structure (Table 1).

Experimental

The mixture of Mn(OAc)2 (0.1 mmol), 2-(4-(pyridine-3-yl)pyrimidin-2-ylthio)acetic acid (0.2 mmol) and NaOH (0.2 mmol) in 6 ml of H2O was stirred for 20 min at room temperature. After filtration, the mother liquid was stood for one week to give the colorless crystals suitable for X-raydiffraction analysis.

Refinement

C-bound H atoms were positioned geometrically (C—H =0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The positions of the water H atoms were found from a difference Fourier map, but placed in idealized positions (O—H = 0.85 Å), and refined as riding with Uiso(H) = 1.2 Ueq(O5).

Figures

Fig. 1.
The coordination environment around Mn(II) in the title complex with the atom-labeling scheme [symmetry code: (A) -x, 2-y, 1-z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

[Mn(C11H8N3O2S)2(H2O)4]·2H2OZ = 1
Mr = 655.58F(000) = 339
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.459 (3) ÅCell parameters from 3181 reflections
b = 9.240 (3) Åθ = 2.2–28.1°
c = 9.360 (4) ŵ = 0.69 mm1
α = 87.396 (6)°T = 298 K
β = 75.862 (5)°Block, colourless
γ = 79.872 (5)°0.14 × 0.12 × 0.10 mm
V = 698.4 (4) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3181 independent reflections
Radiation source: fine-focus sealed tube2443 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 28.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.884, Tmax = 0.920k = −6→12
4518 measured reflectionsl = −11→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0441P)2] where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00001.00000.50000.02786 (13)
S10.71353 (7)0.62719 (6)0.00440 (6)0.03937 (16)
O10.12141 (17)0.98576 (16)0.26485 (16)0.0383 (4)
O20.24139 (17)1.03191 (17)0.52792 (17)0.0447 (4)
N20.49123 (19)0.56249 (17)0.24128 (18)0.0291 (4)
O40.44775 (17)0.95387 (16)0.25780 (16)0.0412 (4)
N10.6987 (2)0.36606 (19)0.1238 (2)0.0379 (4)
C10.6227 (2)0.5074 (2)0.1385 (2)0.0310 (4)
O30.71010 (18)0.85073 (17)0.23595 (17)0.0455 (4)
C50.2749 (2)0.5349 (2)0.4544 (2)0.0279 (4)
N30.0768 (2)0.75451 (18)0.53326 (19)0.0335 (4)
C110.5782 (2)0.8717 (2)0.1953 (2)0.0302 (4)
C40.4233 (2)0.4687 (2)0.3417 (2)0.0295 (4)
C90.2097 (2)0.6826 (2)0.4396 (2)0.0323 (5)
H9A0.26210.73420.35950.039*
C100.5730 (3)0.7975 (2)0.0536 (2)0.0342 (5)
H10A0.59560.8662−0.02720.041*
H10B0.46140.77930.06330.041*
C60.1962 (3)0.4588 (2)0.5742 (2)0.0354 (5)
H6A0.23540.36000.58820.042*
C80.0031 (3)0.6779 (2)0.6484 (2)0.0364 (5)
H8A−0.08990.72560.71490.044*
C70.0596 (3)0.5315 (2)0.6721 (2)0.0394 (5)
H7A0.00580.48240.75340.047*
C20.6305 (3)0.2757 (2)0.2252 (3)0.0415 (5)
H2C0.67860.17690.22090.050*
C30.4920 (3)0.3206 (2)0.3369 (3)0.0402 (5)
H3A0.44660.25440.40600.048*
O51.0477 (2)0.7838 (2)0.1129 (2)0.0871 (8)
H10.27121.06560.59850.105*
H20.22590.98080.24690.105*
H30.33091.00790.46250.105*
H40.09990.93000.20530.105*
H51.09800.72680.04130.105*
H60.94490.78710.12080.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0239 (2)0.0266 (2)0.0312 (3)−0.00261 (17)−0.00359 (17)−0.00345 (17)
S10.0421 (3)0.0381 (3)0.0316 (3)−0.0063 (2)0.0042 (2)−0.0080 (2)
O10.0354 (8)0.0416 (9)0.0347 (8)−0.0006 (7)−0.0053 (6)−0.0082 (6)
O20.0289 (8)0.0619 (11)0.0447 (10)−0.0092 (7)−0.0080 (7)−0.0149 (8)
N20.0291 (9)0.0264 (9)0.0310 (9)−0.0038 (7)−0.0055 (7)−0.0033 (7)
O40.0305 (8)0.0442 (9)0.0447 (9)−0.0013 (7)−0.0023 (7)−0.0141 (7)
N10.0360 (10)0.0308 (10)0.0452 (11)0.0008 (8)−0.0091 (8)−0.0125 (8)
C10.0313 (11)0.0301 (11)0.0339 (12)−0.0060 (8)−0.0105 (9)−0.0066 (8)
O30.0342 (8)0.0558 (10)0.0482 (10)−0.0005 (7)−0.0147 (7)−0.0200 (8)
C50.0274 (10)0.0260 (10)0.0319 (11)−0.0056 (8)−0.0095 (8)0.0004 (8)
N30.0293 (9)0.0303 (9)0.0371 (10)−0.0036 (7)−0.0019 (7)−0.0008 (7)
C110.0309 (11)0.0293 (11)0.0301 (11)−0.0086 (8)−0.0039 (8)−0.0006 (8)
C40.0304 (10)0.0259 (10)0.0344 (11)−0.0039 (8)−0.0125 (9)−0.0017 (8)
C90.0314 (11)0.0267 (10)0.0361 (12)−0.0048 (8)−0.0035 (9)0.0027 (8)
C100.0415 (12)0.0325 (11)0.0283 (11)−0.0068 (9)−0.0075 (9)0.0003 (8)
C60.0428 (12)0.0274 (11)0.0374 (12)−0.0076 (9)−0.0121 (10)0.0045 (9)
C80.0324 (11)0.0390 (12)0.0342 (12)−0.0070 (9)−0.0003 (9)−0.0015 (9)
C70.0427 (13)0.0403 (13)0.0335 (12)−0.0119 (10)−0.0036 (10)0.0084 (9)
C20.0462 (13)0.0246 (11)0.0512 (14)0.0041 (10)−0.0130 (11)−0.0077 (10)
C30.0456 (13)0.0253 (11)0.0470 (14)−0.0031 (9)−0.0081 (11)0.0008 (9)
O50.0420 (10)0.1175 (19)0.0989 (17)−0.0176 (11)0.0041 (11)−0.0692 (14)

Geometric parameters (Å, °)

Mn1—O12.1889 (16)C5—C91.393 (3)
Mn1—O1i2.1889 (16)C5—C41.485 (3)
Mn1—O2i2.1919 (15)N3—C91.335 (2)
Mn1—O22.1919 (15)N3—C81.345 (3)
Mn1—N3i2.2761 (18)C11—C101.534 (3)
Mn1—N32.2761 (18)C4—C31.388 (3)
S1—C11.759 (2)C9—H9A0.9300
S1—C101.800 (2)C10—H10A0.9700
O1—H20.8520C10—H10B0.9700
O1—H40.8477C6—C71.375 (3)
O2—H10.8510C6—H6A0.9300
O2—H30.8511C8—C71.380 (3)
N2—C11.320 (2)C8—H8A0.9300
N2—C41.342 (3)C7—H7A0.9300
O4—C111.252 (2)C2—C31.382 (3)
N1—C21.327 (3)C2—H2C0.9300
N1—C11.347 (2)C3—H3A0.9300
O3—C111.246 (2)O5—H50.8500
C5—C61.386 (3)O5—H60.8501
O1—Mn1—O1i180.000 (1)C8—N3—Mn1123.89 (14)
O1—Mn1—O2i95.09 (6)O3—C11—O4125.43 (18)
O1i—Mn1—O2i84.91 (6)O3—C11—C10118.76 (18)
O1—Mn1—O284.91 (6)O4—C11—C10115.76 (18)
O1i—Mn1—O295.09 (6)N2—C4—C3120.38 (18)
O2i—Mn1—O2180.00 (8)N2—C4—C5115.60 (16)
O1—Mn1—N3i87.81 (6)C3—C4—C5124.02 (18)
O1i—Mn1—N3i92.19 (6)N3—C9—C5124.01 (18)
O2i—Mn1—N3i88.48 (6)N3—C9—H9A118.0
O2—Mn1—N3i91.52 (6)C5—C9—H9A118.0
O1—Mn1—N392.19 (6)C11—C10—S1116.57 (14)
O1i—Mn1—N387.81 (6)C11—C10—H10A108.1
O2i—Mn1—N391.52 (6)S1—C10—H10A108.1
O2—Mn1—N388.48 (6)C11—C10—H10B108.1
N3i—Mn1—N3180.000 (1)S1—C10—H10B108.1
C1—S1—C10101.21 (10)H10A—C10—H10B107.3
Mn1—O1—H2113.5C7—C6—C5119.14 (19)
Mn1—O1—H4123.8C7—C6—H6A120.4
H2—O1—H4108.6C5—C6—H6A120.4
Mn1—O2—H1132.6N3—C8—C7122.84 (19)
Mn1—O2—H3122.8N3—C8—H8A118.6
H1—O2—H3104.6C7—C8—H8A118.6
C1—N2—C4117.31 (17)C6—C7—C8119.36 (19)
C2—N1—C1114.58 (18)C6—C7—H7A120.3
N2—C1—N1127.05 (19)C8—C7—H7A120.3
N2—C1—S1118.41 (15)N1—C2—C3123.44 (19)
N1—C1—S1114.55 (15)N1—C2—H2C118.3
C6—C5—C9117.58 (18)C3—C2—H2C118.3
C6—C5—C4124.11 (18)C2—C3—C4117.2 (2)
C9—C5—C4118.31 (17)C2—C3—H3A121.4
C9—N3—C8117.06 (18)C4—C3—H3A121.4
C9—N3—Mn1118.88 (13)H5—O5—H6106.5
C4—N2—C1—N1−0.9 (3)C9—C5—C4—C3−174.50 (19)
C4—N2—C1—S1179.48 (14)C8—N3—C9—C50.1 (3)
C2—N1—C1—N20.1 (3)Mn1—N3—C9—C5175.57 (15)
C2—N1—C1—S1179.79 (15)C6—C5—C9—N3−0.1 (3)
C10—S1—C1—N2−3.72 (17)C4—C5—C9—N3179.86 (18)
C10—S1—C1—N1176.59 (14)O3—C11—C10—S128.1 (3)
O1—Mn1—N3—C924.51 (15)O4—C11—C10—S1−154.45 (16)
O1i—Mn1—N3—C9−155.49 (15)C1—S1—C10—C1171.70 (17)
O2i—Mn1—N3—C9119.67 (15)C9—C5—C6—C7−0.2 (3)
O2—Mn1—N3—C9−60.33 (15)C4—C5—C6—C7179.86 (19)
O1—Mn1—N3—C8−160.35 (16)C9—N3—C8—C70.2 (3)
O1i—Mn1—N3—C819.65 (16)Mn1—N3—C8—C7−175.02 (15)
O2i—Mn1—N3—C8−65.20 (17)C5—C6—C7—C80.5 (3)
O2—Mn1—N3—C8114.80 (17)N3—C8—C7—C6−0.5 (3)
C1—N2—C4—C30.9 (3)C1—N1—C2—C30.6 (3)
C1—N2—C4—C5−179.45 (16)N1—C2—C3—C4−0.5 (3)
C6—C5—C4—N2−174.15 (19)N2—C4—C3—C2−0.3 (3)
C9—C5—C4—N25.9 (3)C5—C4—C3—C2−179.9 (2)
C6—C5—C4—C35.5 (3)

Symmetry codes: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1···O3ii0.851.822.655 (2)168
O1—H2···O40.851.882.709 (2)165
O2—H3···O40.851.972.743 (2)150
O1—H4···O5iii0.851.812.642 (3)167
O5—H5···N1iv0.852.092.888 (3)155
O5—H6···O30.852.012.775 (3)149

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x−1, y, z; (iv) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2600).

References

  • Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hao, Z. M., Fang, R. Q., Wu, H. S. & Zhang, X. M. (2008). Inorg. Chem.47, 8197–8203. [PubMed]
  • He, Y. K., Han, Z. B., Ma, Y. & Zhang, X. D. (2007). Inorg. Chem. Commun.10, 829–832.
  • Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, H. B., Ji, J. F., Zhang, Y. W. & Gou, S. H. (2009). Inorg. Chem. Commun.9, 240–242.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography