PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2223–o2224.
Published online 2009 August 22. doi:  10.1107/S1600536809032292
PMCID: PMC2970046

7-Acetoxy­cochinchinone I1

Abstract

The title compound {systematic name: 12-[(2E)-3,7-dimethyl-2,6-octa­dien­yl]-5,8-dihydr­oxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one}, C30H32O6, has four fused rings (A/B/C/D) and the xanthone ring system (A/B/C) is essentially planar, with dihedral angles of 1.85 (13) and 2.47 (13)°, respectively, between rings A and B, and between rings B and C. The chromene ring D is in a sofa form. The geranyl side chain is axially attached to ring C with an (−)-synclinal conformation. The 3-methyl-2-butenyl terminal of the geranyl side chain is disordered with the site-occupancy ratio of 0.513 (5):0.487 (5). The acet­oxy group is attached axially to ring A with an (+)-synclinal conformation. An intra­molecular O—H(...)O hydrogen bond involving the carbonyl and hydroxyl groups generates an S(6) ring motif. In the crystal, weak C—H(...)O and C—H(...)π inter­actions, and π–π inter­actions with centroid–centroid distances of 3.6562 (16) and 3.6565 (16) Å are observed.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For the bioactivity of xanthones, see, for examples: Boonnak et al. (2006 [triangle], 2007 [triangle], 2009 [triangle]); Molinar-Toribio et al. (2006 [triangle]); Vo (1997 [triangle]). For related structures, see, for example: Boonnak et al. (2009 [triangle]); Kosela et al. (1999 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2223-scheme1.jpg

Experimental

Crystal data

  • C30H32O6
  • M r = 488.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2223-efi1.jpg
  • a = 6.1047 (1) Å
  • b = 8.6019 (1) Å
  • c = 25.4475 (4) Å
  • α = 97.705 (2)°
  • β = 91.888 (1)°
  • γ = 106.581 (1)°
  • V = 1265.60 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.37 × 0.14 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.968, T max = 0.994
  • 20232 measured reflections
  • 5745 independent reflections
  • 4481 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095
  • wR(F 2) = 0.169
  • S = 1.22
  • 5745 reflections
  • 370 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032292/is2444sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032292/is2444Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033). NB thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. The authors also thank the Koshino Corporation Group, Japan, Prince of Songkla University and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Cratoxylum cochinchinense belongs to the family Guttiferae, which is distributed in several parts of Thailand. This plant is a well known tropical tree and is commonly known in Thailand as "Tui Kliang". The bark, roots, and leaves of this plant have been used in folk medicine to treat fever, coughs, diarrhea, itches, ulcers, and abdominal complaints (Vo, 1997). Previous investigations revealed the major components from the Cratoxylum genus as xanthones and anthraquinones (Boonnak et al., 2006, 2007, 2009). Xanthones have been reported to exhibit biological activities such as antibacterial and cytotoxic (Boonnak et al., 2006, 2007, 2009) as well as antiprotozoal activities (Molinar-Toribio et al., 2006). From our previous work it was found that cochinchinone I, the isolated xanthone from the resin of Cratoxylum cochinchinense, was active against Pseudomonas aeruginosa (Boonnak et al., 2009). The title compound (I) is an acetylated product of cochinchinone I, which was modified in order to compare their antibacterial and cytotoxic activities. Herein we report the crystal structure of (I).

The title molecule (Fig. 1) has a four-fused rings (A/B/C/D), the xanthone skeleton is essentially planar, the dihedral angles between ring A/B and B/C are 1.85 (13) and 2.47 (13)°, respectively. The chromene ring D is in a sofa form with puckering parameter Q = 0.400 (3) Å, θ = 64.0 (4)° and [var phi] = 314.5 (5)° (Cremer & Pople, 1975), the puckered C16 atom having the maximum deviation of -0.269 (3) Å. The two methyl groups are axially and bisectionally attached to chromine ring at atom C16 with torsion angles C14/C15/C16/C18 of 80.2 (3)° and C14/C15/C16/C17 of -155.0 (3)°, respectively. The geranyl side chain is axially attached to ring C at C4 with C3—C4—C21—C22 = -84.1 (3)°, indicating an (-)-syn-clinal conformation (Fig. 1). Moreover the 3-methyl-2-butenyl terminal of this geranyl side chain is disordered with the refined site-occupancy ratio of 0.513 (5)/0.487 (5). The acetoxy moiety is axially attached to ring A at C7 with C8—C7—O2—C19 = 60.2 (4)°, indicating an (+)-syn-clinal conformation and the dihedral angle between the mean plane through the acetoxy group [C19/C20/O2/O3] and ring A is 59.05 (14)°. O—H···O intramolecular hydrogen bond involving the carbonyl and hydroxyl moieties generates an S(6) ring motif (Bernstein et al., 1995). The bond lengths in (I) show normal values (Allen et al., 1987) and are comparable to the related structures; cochinchinone I (Boonnak et al., 2009) and dulxanthone E (Kosela et al., 1999).

In the crystal packing (Fig. 2), the symmetric weak C20—H20A···O4 interactions (Table 1) linked the molecules into dimers and generate R22(18) motifs (Bernstein et al., 1995). These dimers are arranged into molecular sheets parallel to the bc plane and these sheets are stacked along the a axis arising from π–π interactions with the Cg1···Cg2 distances of 3.6562 (16) Å (symmetry code: -1 + x, y, z) and 3.6565 (16) Å (symmetry code: 1 + x, y, z); Cg1 and Cg2 are the centroids of C1–C4/C10/C11 and C5–C8/C12/C13 rings, respectively. The crystal is also stabilized by a C—H···π interaction (Table 1).

Experimental

The resin of C. cochinchinense (87.75 g) was extracted with CH2Cl2 (2 × 2.0 L, for a week) at room temperature and was evaporated under reduced pressure to afford a deep green crude CH2Cl2 extract (47.04 g), which was subjected to QCC (Quick Column Chromatography) on silica gel (Merck 60 F254) using hexane as a first eluent and then increasing the polarity with acetone to give 16 fractions (FR1—FR16). Fractions FR10 and FR11 were separated by QCC eluting with a gradient of acetone-hexane to give seven fractions (FR10A—FR10G). Subfraction FR10B was further purified by CC on silica gel C-18 and eluted with CH3OH to give cochinchinone I which was further converted to its derivative form by acetylation with Ac2O in pyridine to give the title compound, which was recrytalized out from CHCl3/CH3OH (9:1, v/v) to afford the yellow single crystals of the title compound after several days (m.p. 389–391 K).

Refinement

Hydroxy H atom was located from the difference map and isotropically refined. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å for aromatic, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for hydroxy and methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.72 Å from C10 and the deepest hole is located at 0.45 Å from H14A.

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component. Hydrogen bonds were drawn as dash lines.
Fig. 2.
The crystal packing of the major component of the title compound, viewed along the a axis, showing the arrangement of the dimers into molecular sheets. Hydrogen bonds are shown as dashed lines.

Crystal data

C30H32O6Z = 2
Mr = 488.56F(000) = 520
Triclinic, P1Dx = 1.282 Mg m3
Hall symbol: -P 1Melting point = 389–391 K
a = 6.1047 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6019 (1) ÅCell parameters from 5745 reflections
c = 25.4475 (4) Åθ = 2.4–27.5°
α = 97.705 (2)°µ = 0.09 mm1
β = 91.888 (1)°T = 100 K
γ = 106.581 (1)°Needle, yellow
V = 1265.60 (3) Å30.37 × 0.14 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer5745 independent reflections
Radiation source: sealed tube4481 reflections with I > 2σ(I)
graphiteRint = 0.056
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→7
Tmin = 0.968, Tmax = 0.994k = −11→11
20232 measured reflectionsl = −33→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.22w = 1/[σ2(Fo2) + (0.0391P)2 + 1.0353P] where P = (Fo2 + 2Fc2)/3
5745 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.4903 (3)0.0153 (2)0.34364 (7)0.0215 (4)
O2−0.2013 (3)0.1650 (2)0.45392 (8)0.0274 (5)
O30.0140 (3)0.3410 (2)0.52310 (8)0.0290 (5)
O40.5260 (3)0.5024 (2)0.37753 (8)0.0303 (5)
O50.8916 (3)0.5734 (2)0.32694 (9)0.0338 (5)
H1O50.76230.57440.34210.051*
O61.1288 (3)0.1277 (2)0.24297 (8)0.0249 (4)
C10.8620 (5)0.4101 (3)0.31609 (12)0.0275 (7)
C21.0173 (5)0.3570 (3)0.28511 (12)0.0261 (6)
C30.9824 (4)0.1868 (3)0.27332 (11)0.0223 (6)
C40.8103 (5)0.0702 (3)0.29359 (11)0.0225 (6)
C50.1645 (5)−0.0618 (3)0.39063 (11)0.0231 (6)
H5A0.1686−0.16970.38330.028*
C6−0.0072 (5)−0.0238 (3)0.41912 (11)0.0246 (6)
H6A−0.1205−0.10620.43110.030*
C7−0.0089 (5)0.1388 (3)0.42974 (11)0.0242 (6)
C80.1559 (5)0.2631 (3)0.41349 (11)0.0240 (6)
H8A0.15230.37100.42140.029*
C90.5139 (5)0.3543 (3)0.36676 (11)0.0244 (6)
C100.6792 (5)0.2985 (3)0.33615 (11)0.0243 (6)
C110.6618 (4)0.1303 (3)0.32475 (11)0.0209 (6)
C120.3303 (5)0.0636 (3)0.37321 (10)0.0220 (6)
C130.3306 (5)0.2261 (3)0.38476 (11)0.0235 (6)
C141.2182 (5)0.4675 (3)0.26653 (13)0.0318 (7)
H14A1.26110.57950.27890.038*
C151.3398 (5)0.4041 (4)0.23125 (13)0.0334 (7)
H15A1.48240.46770.22350.040*
C161.2444 (5)0.2300 (3)0.20441 (11)0.0243 (6)
C171.4310 (5)0.1556 (4)0.18603 (12)0.0308 (7)
H17A1.53890.16600.21550.046*
H17B1.50840.21210.15880.046*
H17C1.36400.04170.17210.046*
C181.0709 (5)0.2163 (4)0.15850 (13)0.0346 (7)
H18A0.94830.25640.17150.052*
H18B1.01030.10350.14260.052*
H18C1.14440.28020.13240.052*
C19−0.1699 (5)0.2723 (3)0.50082 (11)0.0242 (6)
C20−0.3962 (5)0.2855 (4)0.51718 (13)0.0369 (8)
H20A−0.38400.32610.55450.055*
H20B−0.50750.17940.51010.055*
H20C−0.44340.35970.49750.055*
C210.7812 (5)−0.1116 (3)0.27952 (11)0.0203 (6)
H21A0.9307−0.12930.27710.024*
H21B0.7063−0.16850.30740.024*
C220.6412 (5)−0.1810 (3)0.22756 (11)0.0210 (6)
H22A0.4926−0.17260.22630.025*
C230.7016 (5)−0.2524 (3)0.18336 (11)0.0225 (6)
C240.5354 (5)−0.3151 (4)0.13489 (11)0.0292 (7)
H24A0.3826−0.31890.14520.035*
H24B0.5344−0.42640.12150.035*
C250.5913 (6)−0.2108 (5)0.09019 (14)0.0499 (10)
H25A0.7531−0.17990.08610.060*0.513 (6)
H25B0.5456−0.11300.09860.060*0.513 (6)
H25C0.7262−0.22650.07480.060*0.487 (6)
H25D0.6274−0.09780.10600.060*0.487 (6)
C26A0.4508 (14)−0.3190 (11)0.0352 (3)0.0395 (18)0.513 (6)
H26A0.4791−0.41720.02210.047*0.513 (6)
C27A0.2990 (14)−0.2709 (9)0.0089 (3)0.0411 (18)0.513 (6)
C28A0.1669 (19)−0.3770 (13)−0.0404 (4)0.069 (3)0.513 (6)
H28A0.2035−0.4791−0.04550.103*0.513 (6)
H28B0.2073−0.3217−0.07060.103*0.513 (6)
H28C0.0056−0.3978−0.03660.103*0.513 (6)
C29A0.2355 (14)−0.1167 (10)0.0241 (3)0.060 (2)0.513 (6)
H29A0.3303−0.05330.05480.090*0.513 (6)
H29B0.0775−0.14340.03200.090*0.513 (6)
H29C0.2577−0.0541−0.00490.090*0.513 (6)
C26B0.4121 (13)−0.2419 (10)0.0485 (3)0.0317 (17)0.487 (6)
H26B0.2618−0.26630.05820.038*0.487 (6)
C27B0.4451 (14)−0.2384 (8)−0.0025 (3)0.0322 (16)0.487 (6)
C28B0.2448 (16)−0.2883 (12)−0.0447 (3)0.045 (2)0.487 (6)
H28D0.1039−0.3268−0.02830.067*0.487 (6)
H28E0.2627−0.3742−0.07090.067*0.487 (6)
H28F0.2416−0.1953−0.06150.067*0.487 (6)
C29B0.6724 (13)−0.1817 (10)−0.0245 (3)0.046 (2)0.487 (6)
H29D0.7908−0.14840.00400.069*0.487 (6)
H29E0.6766−0.0906−0.04290.069*0.487 (6)
H29F0.6966−0.2697−0.04880.069*0.487 (6)
C300.9318 (5)−0.2815 (4)0.17768 (12)0.0326 (7)
H30A1.0354−0.21970.20740.049*
H30B0.9913−0.24720.14530.049*
H30C0.9158−0.39620.17680.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0212 (10)0.0155 (9)0.0258 (10)0.0021 (7)0.0038 (8)0.0026 (8)
O20.0187 (10)0.0284 (11)0.0305 (11)0.0043 (8)−0.0016 (8)−0.0051 (9)
O30.0274 (11)0.0314 (11)0.0239 (11)0.0014 (9)−0.0005 (9)0.0060 (9)
O40.0288 (11)0.0160 (10)0.0433 (13)0.0043 (8)0.0008 (9)0.0007 (9)
O50.0256 (11)0.0141 (10)0.0594 (15)0.0019 (8)0.0052 (10)0.0053 (9)
O60.0197 (10)0.0205 (10)0.0343 (12)0.0025 (8)0.0039 (8)0.0101 (8)
C10.0234 (15)0.0145 (13)0.0417 (18)0.0007 (11)−0.0038 (13)0.0068 (12)
C20.0206 (14)0.0203 (14)0.0350 (17)0.0010 (11)−0.0049 (12)0.0081 (12)
C30.0162 (13)0.0228 (14)0.0279 (15)0.0060 (11)−0.0035 (11)0.0041 (12)
C40.0219 (14)0.0173 (13)0.0282 (15)0.0051 (11)−0.0023 (12)0.0055 (11)
C50.0223 (14)0.0197 (13)0.0261 (15)0.0057 (11)−0.0014 (12)0.0016 (11)
C60.0218 (14)0.0201 (14)0.0282 (16)0.0005 (11)−0.0008 (12)0.0034 (12)
C70.0178 (14)0.0264 (14)0.0267 (15)0.0070 (11)−0.0023 (11)−0.0021 (12)
C80.0222 (15)0.0199 (14)0.0274 (15)0.0055 (11)−0.0071 (12)−0.0024 (11)
C90.0236 (15)0.0192 (14)0.0279 (16)0.0042 (11)−0.0055 (12)0.0010 (11)
C100.0236 (15)0.0190 (13)0.0293 (16)0.0048 (11)−0.0039 (12)0.0052 (12)
C110.0181 (14)0.0154 (13)0.0258 (15)−0.0006 (10)−0.0044 (11)0.0044 (11)
C120.0214 (14)0.0232 (14)0.0196 (14)0.0046 (11)−0.0030 (11)0.0024 (11)
C130.0215 (14)0.0209 (14)0.0250 (15)0.0036 (11)−0.0048 (11)0.0005 (11)
C140.0215 (15)0.0186 (14)0.053 (2)0.0004 (12)0.0022 (14)0.0097 (13)
C150.0215 (16)0.0272 (16)0.047 (2)−0.0033 (12)0.0021 (14)0.0131 (14)
C160.0160 (14)0.0255 (14)0.0314 (16)0.0026 (11)0.0001 (12)0.0129 (12)
C170.0211 (15)0.0347 (16)0.0377 (18)0.0049 (12)0.0038 (13)0.0157 (14)
C180.0221 (16)0.0402 (18)0.0419 (19)0.0040 (13)−0.0002 (14)0.0191 (15)
C190.0303 (16)0.0207 (14)0.0205 (15)0.0035 (12)0.0020 (12)0.0081 (11)
C200.0298 (17)0.0441 (19)0.0340 (18)0.0118 (15)0.0021 (14)−0.0065 (15)
C210.0198 (14)0.0143 (12)0.0263 (15)0.0027 (10)0.0021 (11)0.0060 (11)
C220.0191 (14)0.0151 (12)0.0280 (15)0.0013 (10)0.0000 (11)0.0083 (11)
C230.0210 (14)0.0177 (13)0.0258 (15)−0.0005 (11)0.0010 (11)0.0061 (11)
C240.0228 (15)0.0317 (16)0.0287 (16)0.0005 (12)0.0027 (12)0.0049 (13)
C250.036 (2)0.068 (3)0.041 (2)−0.0003 (18)−0.0023 (16)0.0271 (19)
C26A0.050 (5)0.042 (5)0.023 (4)0.010 (4)0.004 (3)0.002 (3)
C27A0.037 (4)0.049 (4)0.034 (4)0.002 (3)−0.005 (3)0.019 (3)
C28A0.074 (7)0.080 (8)0.038 (5)−0.001 (6)−0.022 (5)0.020 (5)
C29A0.048 (5)0.080 (6)0.067 (6)0.030 (4)0.023 (4)0.033 (5)
C26B0.032 (4)0.040 (4)0.024 (4)0.013 (3)0.009 (3)0.003 (3)
C27B0.032 (4)0.033 (4)0.032 (4)0.013 (3)−0.001 (3)0.001 (3)
C28B0.046 (5)0.054 (6)0.035 (5)0.017 (4)0.001 (4)0.004 (4)
C29B0.051 (5)0.064 (5)0.026 (4)0.019 (4)0.006 (3)0.007 (3)
C300.0285 (17)0.0382 (17)0.0303 (17)0.0109 (14)0.0020 (13)−0.0001 (13)

Geometric parameters (Å, °)

O1—C111.369 (3)C20—H20A0.9600
O1—C121.375 (3)C20—H20B0.9600
O2—C191.379 (3)C20—H20C0.9600
O2—C71.404 (3)C21—C221.502 (4)
O3—C191.192 (3)C21—H21A0.9700
O4—C91.247 (3)C21—H21B0.9700
O5—C11.352 (3)C22—C231.323 (4)
O5—H1O50.8912C22—H22A0.9300
O6—C31.361 (3)C23—C301.505 (4)
O6—C161.469 (3)C23—C241.506 (4)
C1—C21.389 (4)C24—C251.530 (4)
C1—C101.409 (4)C24—H24A0.9700
C2—C31.406 (4)C24—H24B0.9700
C2—C141.457 (4)C25—C26B1.440 (8)
C3—C41.396 (4)C25—C26A1.636 (8)
C4—C111.387 (4)C25—H25A0.9601
C4—C211.514 (3)C25—H25B0.9600
C5—C61.383 (4)C25—H25C0.9600
C5—C121.385 (4)C25—H25D0.9600
C5—H5A0.9300C26A—C27A1.315 (11)
C6—C71.392 (4)C26A—H26A0.9300
C6—H6A0.9300C27A—C29A1.492 (11)
C7—C81.363 (4)C27A—C28A1.505 (12)
C8—C131.398 (4)C28A—H28A0.9600
C8—H8A0.9300C28A—H28B0.9600
C9—C101.444 (4)C28A—H28C0.9600
C9—C131.464 (4)C29A—H29A0.9600
C10—C111.409 (4)C29A—H29B0.9600
C12—C131.389 (4)C29A—H29C0.9600
C14—C151.341 (4)C26B—C27B1.324 (10)
C14—H14A0.9300C26B—H26B0.9300
C15—C161.500 (4)C27B—C29B1.488 (10)
C15—H15A0.9300C27B—C28B1.524 (11)
C16—C171.516 (4)C28B—H28D0.9600
C16—C181.520 (4)C28B—H28E0.9600
C17—H17A0.9600C28B—H28F0.9600
C17—H17B0.9600C29B—H29D0.9600
C17—H17C0.9600C29B—H29E0.9600
C18—H18A0.9600C29B—H29F0.9600
C18—H18B0.9600C30—H30A0.9600
C18—H18C0.9600C30—H30B0.9600
C19—C201.487 (4)C30—H30C0.9600
C11—O1—C12119.8 (2)C19—C20—H20B109.5
C19—O2—C7119.2 (2)H20A—C20—H20B109.5
C1—O5—H1O5100.7C19—C20—H20C109.5
C3—O6—C16116.5 (2)H20A—C20—H20C109.5
O5—C1—C2118.1 (2)H20B—C20—H20C109.5
O5—C1—C10120.4 (3)C22—C21—C4111.2 (2)
C2—C1—C10121.5 (2)C22—C21—H21A109.4
C1—C2—C3117.5 (3)C4—C21—H21A109.4
C1—C2—C14123.7 (3)C22—C21—H21B109.4
C3—C2—C14118.8 (3)C4—C21—H21B109.4
O6—C3—C4116.0 (2)H21A—C21—H21B108.0
O6—C3—C2120.1 (2)C23—C22—C21128.5 (3)
C4—C3—C2123.8 (3)C23—C22—H22A115.7
C11—C4—C3116.1 (2)C21—C22—H22A115.7
C11—C4—C21122.4 (2)C22—C23—C30123.9 (3)
C3—C4—C21121.4 (2)C22—C23—C24120.7 (3)
C6—C5—C12118.9 (3)C30—C23—C24115.3 (2)
C6—C5—H5A120.5C23—C24—C25113.7 (2)
C12—C5—H5A120.5C23—C24—H24A108.8
C5—C6—C7119.4 (3)C25—C24—H24A108.8
C5—C6—H6A120.3C23—C24—H24B108.8
C7—C6—H6A120.3C25—C24—H24B108.8
C8—C7—C6122.0 (3)H24A—C24—H24B107.7
C8—C7—O2122.0 (3)C26B—C25—C24115.7 (4)
C6—C7—O2115.8 (2)C24—C25—C26A108.3 (4)
C7—C8—C13119.1 (3)C26B—C25—H25A126.3
C7—C8—H8A120.4C24—C25—H25A110.2
C13—C8—H8A120.4C26A—C25—H25A110.2
O4—C9—C10122.4 (3)C26B—C25—H25B80.8
O4—C9—C13121.8 (3)C24—C25—H25B109.7
C10—C9—C13115.9 (2)C26A—C25—H25B109.9
C1—C10—C11117.7 (3)H25A—C25—H25B108.6
C1—C10—C9121.2 (2)C26B—C25—H25C108.9
C11—C10—C9121.2 (3)C24—C25—H25C108.7
O1—C11—C4115.9 (2)C26A—C25—H25C86.1
O1—C11—C10120.8 (2)H25B—C25—H25C130.4
C4—C11—C10123.3 (3)C26B—C25—H25D108.2
O1—C12—C5115.4 (2)C24—C25—H25D107.5
O1—C12—C13123.1 (2)C26A—C25—H25D134.7
C5—C12—C13121.5 (3)H25A—C25—H25D81.8
C12—C13—C8119.1 (3)H25C—C25—H25D107.5
C12—C13—C9119.3 (3)C27A—C26A—C25121.8 (8)
C8—C13—C9121.7 (2)C27A—C26A—H26A119.1
C15—C14—C2118.6 (3)C25—C26A—H26A119.1
C15—C14—H14A120.7C26A—C27A—C29A125.8 (8)
C2—C14—H14A120.7C26A—C27A—C28A120.2 (9)
C14—C15—C16119.6 (3)C29A—C27A—C28A114.0 (8)
C14—C15—H15A120.2C27B—C26B—C25124.9 (7)
C16—C15—H15A120.2C27B—C26B—H26B117.5
O6—C16—C15109.3 (2)C25—C26B—H26B117.5
O6—C16—C17104.6 (2)C26B—C27B—C29B125.1 (7)
C15—C16—C17112.2 (2)C26B—C27B—C28B121.5 (7)
O6—C16—C18108.3 (2)C29B—C27B—C28B113.4 (6)
C15—C16—C18111.3 (2)C27B—C28B—H28D109.5
C17—C16—C18110.8 (3)C27B—C28B—H28E109.5
C16—C17—H17A109.5H28D—C28B—H28E109.5
C16—C17—H17B109.5C27B—C28B—H28F109.5
H17A—C17—H17B109.5H28D—C28B—H28F109.5
C16—C17—H17C109.5H28E—C28B—H28F109.5
H17A—C17—H17C109.5C27B—C29B—H29D109.5
H17B—C17—H17C109.5C27B—C29B—H29E109.5
C16—C18—H18A109.5H29D—C29B—H29E109.5
C16—C18—H18B109.5C27B—C29B—H29F109.5
H18A—C18—H18B109.5H29D—C29B—H29F109.5
C16—C18—H18C109.5H29E—C29B—H29F109.5
H18A—C18—H18C109.5C23—C30—H30A109.5
H18B—C18—H18C109.5C23—C30—H30B109.5
O3—C19—O2123.1 (3)H30A—C30—H30B109.5
O3—C19—C20127.6 (3)C23—C30—H30C109.5
O2—C19—C20109.3 (2)H30A—C30—H30C109.5
C19—C20—H20A109.5H30B—C30—H30C109.5
O5—C1—C2—C3−178.9 (2)C6—C5—C12—O1−177.8 (2)
C10—C1—C2—C31.5 (4)C6—C5—C12—C131.5 (4)
O5—C1—C2—C144.1 (4)O1—C12—C13—C8177.6 (2)
C10—C1—C2—C14−175.5 (3)C5—C12—C13—C8−1.7 (4)
C16—O6—C3—C4155.6 (2)O1—C12—C13—C9−2.6 (4)
C16—O6—C3—C2−28.0 (3)C5—C12—C13—C9178.1 (3)
C1—C2—C3—O6179.8 (2)C7—C8—C13—C120.5 (4)
C14—C2—C3—O6−3.0 (4)C7—C8—C13—C9−179.3 (3)
C1—C2—C3—C4−4.1 (4)O4—C9—C13—C12−177.7 (3)
C14—C2—C3—C4173.1 (3)C10—C9—C13—C122.0 (4)
O6—C3—C4—C11179.7 (2)O4—C9—C13—C82.1 (4)
C2—C3—C4—C113.4 (4)C10—C9—C13—C8−178.2 (3)
O6—C3—C4—C21−3.7 (4)C1—C2—C14—C15−171.4 (3)
C2—C3—C4—C21−179.9 (3)C3—C2—C14—C1511.6 (4)
C12—C5—C6—C7−0.2 (4)C2—C14—C15—C1611.3 (4)
C5—C6—C7—C8−0.9 (4)C3—O6—C16—C1547.3 (3)
C5—C6—C7—O2173.6 (2)C3—O6—C16—C17167.6 (2)
C19—O2—C7—C8−60.2 (4)C3—O6—C16—C18−74.1 (3)
C19—O2—C7—C6125.3 (3)C14—C15—C16—O6−39.3 (4)
C6—C7—C8—C130.8 (4)C14—C15—C16—C17−155.0 (3)
O2—C7—C8—C13−173.4 (2)C14—C15—C16—C1880.2 (3)
O5—C1—C10—C11−178.1 (3)C7—O2—C19—O3−2.5 (4)
C2—C1—C10—C111.5 (4)C7—O2—C19—C20177.3 (2)
O5—C1—C10—C92.6 (4)C11—C4—C21—C2292.4 (3)
C2—C1—C10—C9−177.8 (3)C3—C4—C21—C22−84.1 (3)
O4—C9—C10—C1−1.0 (4)C4—C21—C22—C23119.2 (3)
C13—C9—C10—C1179.3 (3)C21—C22—C23—C301.6 (4)
O4—C9—C10—C11179.7 (3)C21—C22—C23—C24179.9 (2)
C13—C9—C10—C110.0 (4)C22—C23—C24—C25107.2 (3)
C12—O1—C11—C4−177.6 (2)C30—C23—C24—C25−74.4 (3)
C12—O1—C11—C101.3 (4)C23—C24—C25—C26B−166.2 (5)
C3—C4—C11—O1178.7 (2)C23—C24—C25—C26A163.1 (4)
C21—C4—C11—O12.1 (4)C26B—C25—C26A—C27A9.2 (7)
C3—C4—C11—C10−0.2 (4)C24—C25—C26A—C27A119.4 (7)
C21—C4—C11—C10−176.8 (2)C25—C26A—C27A—C29A0.6 (12)
C1—C10—C11—O1179.0 (2)C25—C26A—C27A—C28A−177.7 (7)
C9—C10—C11—O1−1.7 (4)C24—C25—C26B—C27B−143.2 (7)
C1—C10—C11—C4−2.2 (4)C26A—C25—C26B—C27B−61.7 (9)
C9—C10—C11—C4177.1 (3)C25—C26B—C27B—C29B−8.0 (12)
C11—O1—C12—C5−179.8 (2)C25—C26B—C27B—C28B174.2 (7)
C11—O1—C12—C130.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1O5···O40.891.732.576 (3)157
C5—H5A···O5i0.932.583.275 (3)132
C20—H20A···O4ii0.962.473.285 (4)143
C17—H17A···Cg3iii0.972.743.694 (3)171

Symmetry codes: (i) x−1, y−1, z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z.

Footnotes

1This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2444).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A. & Chantrapromma, K. (2009). Tetrahedron65, 3003–3013.
  • Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A. & Laphookhieo, S. (2006). Tetrahedron, 62, 8850–8859.
  • Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). Can. J. Chem 85, 341–345.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Kosela, S., Hu, L. H., Yip, S. C., Rachmatia, T., Sukri, T., Daulay, T. S., Tan, G. K., Vittal, J. J. & Sim, K. Y. (1999). Phytochemistry 52, 1375–1377.
  • Molinar-Toribio, E., González, J., Ortega-Barría, E., Capson, T. L., Coley, P. D., Kursar, T. A., McPhail, K. & Cubilla-Rios, L. (2006). Pharm. Biol 44, 550–553.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vo, V. V. (1997). A Dictionary of Medicinal Plants in Vietnam, Vol. 435. Ho Chi Minh City: Y Hoc Publisher.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography