PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1094.
Published online 2009 August 19. doi:  10.1107/S1600536809031626
PMCID: PMC2970040

Difluoridodioxido(1,10-phenanthroline)molybdenum(VI)

Abstract

The title compound, [MoF2O2(C12H8N2)], has non-crystallographic mirror symmetry. The MoVI atom shows a distorted octa­hedral environment, with the phenanthroline N atoms and the two oxide groups forming the equatorial plane and the F atoms occupying the apical positions. Weak C—H(...)O and C—H(...)F hydrogen-bonding contacts and π–π inter­actions [centroid–centroid distance = 3.662 (1) Å] connect the complex mol­ecules into a three-dimensional supra­molecular framework.

Related literature

For the structure and mode of action of the co-factor of oxido-molybdoenzymes, see: Collison et al. (1996 [triangle]). For the catalyst precursors, see Villata et al. (2000 [triangle]). For the dichlorido­dioxo analogue of the title compound, see: Viossat & Rodier (1979 [triangle]). For other related structures with the chelating phenanthroline ligand, see: Butcher et al. (1979 [triangle]); Bingham et al. (2006 [triangle]); Zhou et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1094-scheme1.jpg

Experimental

Crystal data

  • [MoF2O2(C12H8N2)]
  • M r = 346.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1094-efi5.jpg
  • a = 7.5190 (9) Å
  • b = 17.818 (2) Å
  • c = 9.5331 (11) Å
  • β = 110.8560 (10)°
  • V = 1193.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.12 mm−1
  • T = 295 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.711, T max = 0.799
  • 6460 measured reflections
  • 2394 independent reflections
  • 2248 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.065
  • S = 1.04
  • 2394 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031626/si2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031626/si2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Youth Fund of Northeast Normal University.

supplementary crystallographic information

Comment

The high oxidation state oxomolybdenum(VI) can be potentially used as molybdoenzyme, oxo transfer agents, and catalyst precusors [Collison, et al., (1996); Villata, et al., (2000)]. Though some MoO2X2 (X = Cl, Br) complexes have been reported [Butcher, et al. (1979)], these compounds are usually unstable in air. Thus, the air stable dioxomolybdenum(VI) complex remains an intriguing area for chemists [Bingham, et al. (2006)]. In this paper, we reported a new fluorin containing oxomolybdenum(VI) complex that is stable in air.

As shown in Fig. 1, the title complex exhibits non-crystallographic molecular mirror symmetry. The distorted octahedral environment around molybdenum consists of cis terminal oxygen atoms (Ot) and trans fluorin atoms and bidentate 1,10-phenanthroline ligand. One mirror plane can be seen bisecting the atoms F1-Mo1-F2 and extending through the midpoints of the central C—C bonds of the phenanthroline ligand, while another mirror can be imagined within the phenanthroline plane and the Mo and dioxo atoms. The average Mo—Ot bond distance of 1.691 Å (Table 1) is a typical molybdenum-oxygen terminal double bond and is similar to those observed in MoO2X2.2L complexes [Butcher, et al. (1979)]. The Mo—N bond distances (2.326 (2) Å and 2.330 (2) Å) are also similar to those values observed in analogue complexes [Bingham, et al. (2006); Viossat & Rodier, (1979)]. However, the Mo—F bond distances of 1.905 (1) Å and 1.902 (1) Å for the title compound are transparently shorter than the Mo—Cl or Mo—Br bonds determined in other MoO2X2 (X = Cl, Br) complexes [For MoO2Cl2 complex, see: Viossat & Rodier, (1979); for MoO2X2.2L complexes, see: Butcher, et al. (1979)]. This is the main reason that the title compound is stable in air. Furthermore, there also exist weak C—H···F and C—H···O hydrogen bonding interactions between neighboring molecules which plays an important role to consolidate the supramolecular structure of the title compund. The detailed hydrogen bond parameters are shown in Table 2. Molybdenum and 1,10-phenanthroline complexes were substantively reported [Zhou,et al. (2000); Viossat & Rodier, (1979); Butcher, et al. (1979)], but it was quite missing that some references described the distinctive nature or features of ππ interaction. Whereas for the title complex, the 1,10-phenanthroline phenyl ring induced ππ interaction is demonstrated to aid the three-dimensional structure together with the weak hydrogen bonding contacts (Fig. 2). The centroid to centroid distance is 3.6619 (14) Å. (Cg3···Cg3îii^, Cg3 is the centroid of the ring (N2 C9 C8 C7 C6 C10), symmetry code iii = 1 - x, 1 - y, -z). The perpendicular distance of the rings is 3.369 Å and the slippage between the rings is 1.435 Å.

Experimental

A mixture of Molybdenum trioxide (0.2874 g, 2 mmol), HF (2 ml), 1,10-phenanthroline(0.2246 g, 1.1 mmol) and N,N-dimethylformamide (30 ml) was stirring for 7 h under 343 K. After cooling to room temperature, the mixture was adjusted to pH = 6.05 with 6 M H2SO4 solution. The filtration was allowed to stand over several days to give colorless block single crystals in 80% yield. Analysis calculated for C12H8F2MoN2O2: C 41.64, H 2.33, N 8.09, F 10.98%; found: C 41.60, H 2.30, N 8.06, F 10.94%.

Refinement

H atoms were located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq (C,O)]

Figures

Fig. 1.
The local coordination environment of the Mo(VI) atom in the title compound drawn with 30% probability. H atoms omitted for clarity.
Fig. 2.
The three-dimensional supramolecular network of the title compund produced by hydrogen-bonding and π–π stacking interactions.[Color codes: Mo, pink; O, red; F, yellow; N, blue; C, grey. Symmetry codes: (i) x - 1, -y + 1/2, z - ...

Crystal data

[MoF2O2(C12H8N2)]F(000) = 680
Mr = 346.14Dx = 1.926 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.5190 (9) Åθ = 7.5–15°
b = 17.818 (2) ŵ = 1.12 mm1
c = 9.5331 (11) ÅT = 295 K
β = 110.856 (1)°Block, colorless
V = 1193.5 (2) Å30.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker APEXII diffractometer2248 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
graphiteθmax = 26.2°, θmin = 2.6°
ω scansh = −9→8
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −15→22
Tmin = 0.711, Tmax = 0.799l = −11→11
6460 measured reflections2 standard reflections every 150 reflections
2394 independent reflections intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.065w = 1/[σ2(Fo2) + (0.04P)2 + 0.45P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2394 reflectionsΔρmax = 0.46 e Å3
173 parametersΔρmin = −0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0345 (14)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.46789 (2)0.344747 (10)0.354935 (18)0.03131 (11)
F10.62030 (19)0.32745 (9)0.23609 (16)0.0466 (3)
F20.25657 (19)0.38491 (8)0.39576 (15)0.0441 (3)
O10.6429 (3)0.38223 (12)0.50412 (19)0.0548 (5)
O20.4418 (3)0.25454 (10)0.3980 (2)0.0531 (5)
N10.2347 (2)0.32975 (10)0.1180 (2)0.0305 (4)
N20.4234 (2)0.45752 (10)0.22405 (18)0.0299 (4)
C10.1412 (3)0.26638 (13)0.0684 (3)0.0397 (5)
H10.16890.22470.13130.048*
C20.0030 (3)0.25974 (15)−0.0746 (3)0.0477 (6)
H2C−0.06100.2145−0.10520.057*
C3−0.0379 (3)0.31953 (18)−0.1689 (3)0.0462 (6)
H3C−0.13040.3155−0.26430.055*
C40.0602 (3)0.38758 (14)−0.1221 (2)0.0365 (5)
C50.1962 (3)0.38964 (12)0.0244 (2)0.0282 (4)
C60.2597 (3)0.52244 (13)−0.0100 (2)0.0343 (4)
C70.3596 (3)0.58803 (13)0.0530 (3)0.0417 (5)
H70.34140.6317−0.00370.050*
C80.4833 (4)0.58742 (13)0.1978 (3)0.0442 (5)
H80.54770.63090.24140.053*
C90.5125 (3)0.52088 (13)0.2799 (3)0.0376 (5)
H90.59820.52100.37830.045*
C100.2964 (3)0.45787 (11)0.0808 (2)0.0281 (4)
C110.0272 (3)0.45398 (16)−0.2121 (2)0.0456 (6)
H11−0.06170.4529−0.30930.055*
C120.1218 (3)0.51780 (15)−0.1590 (3)0.0443 (6)
H120.09740.5600−0.22040.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.03177 (14)0.03595 (15)0.02202 (14)0.00454 (6)0.00442 (9)0.00358 (6)
F10.0367 (7)0.0648 (9)0.0385 (7)0.0141 (6)0.0137 (6)0.0061 (7)
F20.0462 (7)0.0492 (8)0.0420 (7)0.0054 (6)0.0220 (6)−0.0004 (6)
O10.0492 (10)0.0685 (13)0.0312 (9)−0.0001 (9)−0.0045 (8)−0.0006 (8)
O20.0691 (12)0.0409 (10)0.0500 (10)0.0100 (8)0.0223 (9)0.0131 (8)
N10.0280 (8)0.0330 (9)0.0283 (9)0.0003 (7)0.0073 (7)−0.0023 (7)
N20.0287 (8)0.0329 (9)0.0256 (8)−0.0001 (7)0.0067 (7)−0.0006 (7)
C10.0349 (11)0.0369 (12)0.0453 (13)−0.0036 (9)0.0116 (10)−0.0063 (10)
C20.0335 (11)0.0517 (15)0.0535 (15)−0.0088 (10)0.0102 (11)−0.0207 (12)
C30.0266 (11)0.0688 (17)0.0355 (12)0.0024 (10)0.0016 (9)−0.0172 (12)
C40.0240 (9)0.0558 (14)0.0265 (10)0.0064 (9)0.0052 (8)−0.0044 (9)
C50.0230 (9)0.0381 (11)0.0223 (9)0.0047 (7)0.0067 (7)−0.0017 (8)
C60.0332 (10)0.0396 (11)0.0349 (11)0.0099 (9)0.0181 (9)0.0081 (9)
C70.0499 (13)0.0352 (12)0.0496 (14)0.0079 (10)0.0296 (12)0.0091 (10)
C80.0536 (14)0.0333 (12)0.0537 (15)−0.0079 (10)0.0290 (12)−0.0064 (10)
C90.0375 (11)0.0396 (12)0.0341 (11)−0.0050 (9)0.0109 (9)−0.0066 (9)
C100.0252 (9)0.0349 (10)0.0247 (9)0.0060 (7)0.0097 (7)0.0013 (8)
C110.0335 (11)0.0714 (17)0.0265 (11)0.0142 (11)0.0042 (9)0.0071 (11)
C120.0404 (12)0.0587 (15)0.0346 (11)0.0186 (11)0.0142 (10)0.0183 (11)

Geometric parameters (Å, °)

Mo1—O21.6874 (18)C3—H3C0.9300
Mo1—O11.6936 (17)C4—C51.407 (3)
Mo1—F11.9017 (14)C4—C111.430 (4)
Mo1—F21.9049 (13)C5—C101.431 (3)
Mo1—N22.3257 (18)C6—C71.403 (3)
Mo1—N12.3295 (18)C6—C101.407 (3)
N1—C11.325 (3)C6—C121.432 (3)
N1—C51.355 (3)C7—C81.362 (4)
N2—C91.324 (3)C7—H70.9300
N2—C101.360 (2)C8—C91.395 (3)
C1—C21.394 (3)C8—H80.9300
C1—H10.9300C9—H90.9300
C2—C31.357 (4)C11—C121.341 (4)
C2—H2C0.9300C11—H110.9300
C3—C41.407 (4)C12—H120.9300
O2—Mo1—O1107.12 (10)C4—C3—H3C120.1
O2—Mo1—F197.89 (8)C3—C4—C5116.8 (2)
O1—Mo1—F196.38 (8)C3—C4—C11124.3 (2)
O2—Mo1—F297.50 (8)C5—C4—C11118.9 (2)
O1—Mo1—F297.80 (8)N1—C5—C4122.9 (2)
F1—Mo1—F2154.96 (6)N1—C5—C10117.49 (17)
O2—Mo1—N2161.15 (8)C4—C5—C10119.63 (19)
O1—Mo1—N291.73 (8)C7—C6—C10117.4 (2)
F1—Mo1—N279.77 (6)C7—C6—C12124.1 (2)
F2—Mo1—N279.28 (6)C10—C6—C12118.5 (2)
O2—Mo1—N190.79 (8)C8—C7—C6119.7 (2)
O1—Mo1—N1162.00 (8)C8—C7—H7120.1
F1—Mo1—N178.99 (6)C6—C7—H7120.1
F2—Mo1—N181.17 (6)C7—C8—C9119.3 (2)
N2—Mo1—N170.38 (6)C7—C8—H8120.3
C1—N1—C5118.29 (19)C9—C8—H8120.3
C1—N1—Mo1124.37 (16)N2—C9—C8122.9 (2)
C5—N1—Mo1117.32 (13)N2—C9—H9118.6
C9—N2—C10118.29 (19)C8—C9—H9118.6
C9—N2—Mo1124.43 (14)N2—C10—C6122.38 (19)
C10—N2—Mo1117.28 (13)N2—C10—C5117.45 (17)
N1—C1—C2122.5 (2)C6—C10—C5120.16 (18)
N1—C1—H1118.7C12—C11—C4121.3 (2)
C2—C1—H1118.7C12—C11—H11119.3
C3—C2—C1119.7 (2)C4—C11—H11119.3
C3—C2—H2C120.2C11—C12—C6121.5 (2)
C1—C2—H2C120.2C11—C12—H12119.2
C2—C3—C4119.8 (2)C6—C12—H12119.2
C2—C3—H3C120.1
O2—Mo1—N1—C10.08 (18)Mo1—N1—C5—C10−2.4 (2)
O1—Mo1—N1—C1174.5 (3)C3—C4—C5—N10.4 (3)
F1—Mo1—N1—C197.96 (18)C11—C4—C5—N1179.07 (19)
F2—Mo1—N1—C1−97.39 (17)C3—C4—C5—C10−177.92 (18)
N2—Mo1—N1—C1−179.08 (18)C11—C4—C5—C100.8 (3)
O2—Mo1—N1—C5−178.35 (15)C10—C6—C7—C8−1.2 (3)
O1—Mo1—N1—C5−3.9 (3)C12—C6—C7—C8177.7 (2)
F1—Mo1—N1—C5−80.46 (14)C6—C7—C8—C91.6 (3)
F2—Mo1—N1—C584.18 (14)C10—N2—C9—C8−0.8 (3)
N2—Mo1—N1—C52.49 (13)Mo1—N2—C9—C8179.51 (16)
O2—Mo1—N2—C9174.7 (2)C7—C8—C9—N2−0.6 (3)
O1—Mo1—N2—C9−4.66 (18)C9—N2—C10—C61.3 (3)
F1—Mo1—N2—C9−100.83 (17)Mo1—N2—C10—C6−179.05 (14)
F2—Mo1—N2—C992.95 (17)C9—N2—C10—C5−177.63 (18)
N1—Mo1—N2—C9177.31 (18)Mo1—N2—C10—C52.1 (2)
O2—Mo1—N2—C10−5.0 (3)C7—C6—C10—N2−0.3 (3)
O1—Mo1—N2—C10175.66 (15)C12—C6—C10—N2−179.26 (19)
F1—Mo1—N2—C1079.49 (14)C7—C6—C10—C5178.60 (17)
F2—Mo1—N2—C10−86.72 (14)C12—C6—C10—C5−0.4 (3)
N1—Mo1—N2—C10−2.37 (13)N1—C5—C10—N20.2 (3)
C5—N1—C1—C2−1.4 (3)C4—C5—C10—N2178.62 (17)
Mo1—N1—C1—C2−179.78 (17)N1—C5—C10—C6−178.69 (17)
N1—C1—C2—C30.9 (4)C4—C5—C10—C6−0.3 (3)
C1—C2—C3—C40.3 (4)C3—C4—C11—C12178.0 (2)
C2—C3—C4—C5−0.9 (3)C5—C4—C11—C12−0.6 (3)
C2—C3—C4—C11−179.5 (2)C4—C11—C12—C6−0.2 (3)
C1—N1—C5—C40.7 (3)C7—C6—C12—C11−178.3 (2)
Mo1—N1—C5—C4179.25 (14)C10—C6—C12—C110.6 (3)
C1—N1—C5—C10179.07 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2C···F1i0.932.453.202 (3)138
C3—H3C···O1ii0.932.553.376 (3)148
C7—H7···F1iii0.932.443.191 (3)137
C8—H8···O2iv0.932.593.222 (3)126

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z−1; (iii) −x+1, −y+1, −z; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2192).

References

  • Bingham, A. L., Drake, J. E., Hursthouse, M. B., Light, M. E., Kumar, R. & Ratnani, R. (2006). Polyhedron, 25, 3238–3244.
  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Penfold, B. R. & Slim, E. (1979). J. Chem. Soc. Dalton Trans pp. 668–675.
  • Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev.25, 25–32.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Villata, L. S., Féliz, M. R. & Capparelli, A. L. (2000). Coord. Chem. Rev., 196, 65–84.
  • Viossat, B. & Rodier, N. (1979). Acta Cryst. B35, 2715–2718.
  • Zhou, Y. S., Zhang, L. J., Fun, H. K. & You, X. Z. (2000). Inorg. Chem. Commun. pp. 114–116.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography