PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2170.
Published online 2009 August 15. doi:  10.1107/S1600536809031699
PMCID: PMC2970039

2-Meth­oxy-6-[(Z)-[(5-methyl-2-pyrid­yl)imino­meth­yl]phenol

Abstract

The title compound, C14H14N2O2, was obtained by a condensation reaction between o-vanillin and 5-methyl­pyridin-2-amine. In the mol­ecule, the dihedral angle between the pyridine and benzene rings is 9.08 (13)°. An intra­molecular hydrogen bond involving the imine N atom and the hydroxyl group may influence the conformation of the mol­ecule. The crystal structure is stabilized by weak C—H(...)O hydrogen bonds.

Related literature

For general background to the use of Schiff bases as ligands in coordination chemistry, see: Yamada, (1999 [triangle]). For their biological activity, see: Yang et al. (2000 [triangle]). For a related structure, see: Dal et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2170-scheme1.jpg

Experimental

Crystal data

  • C14H14N2O2
  • M r = 242.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2170-efi1.jpg
  • a = 11.5995 (6) Å
  • b = 4.9546 (2) Å
  • c = 23.9983 (12) Å
  • β = 117.6090 (4)°
  • V = 1222.15 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.42 × 0.10 × 0.10 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.963, T max = 0.991
  • 13275 measured reflections
  • 2806 independent reflections
  • 1822 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.198
  • S = 1.03
  • 2806 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031699/lh2873sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031699/lh2873Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Basic Science Personnel Training Fund, administered by the Oceanographic Base of Ocean University of China, for its financial support for this project (grant No. J0730530).

supplementary crystallographic information

Comment

Schiff bases are used extensively as ligands in the field of coordination chemistry (Yamada, 1999), and thay have diverse biological activities, such as antibacterial and antitumor activities (Yang et al., 2000). An example of the crystal structure of one such compound, 2-[(1E)-2-aza-2-(5-methyl(2-pyridyl)ethenyl)]-4-bromobenzen-1-ol, is available in the literature (Dal et al., 2007). Herein, the crystal structure of the title compound is presented.

The molecular structure of the title compound is shown in Fig. 1. The molecule contains two aromatic rings linked through a imine group. the dihedral angle between the pyridine and the benzene ring is 9.08 (13)°. An intramolecular O—H···N hydrogen bond in the molecular structure is similar to that in the reported structure (Dal et al., 2007). The crystal structure is stabilized by very weak C-H···O hydrogen bonds (Fig. 2).

Experimental

All chemicals were analytical reagent grade and used directly without further purification. O-vanillin (1 mmol, 152.1 mg) was added with stirring to anhydrous ethanol (30 ml) and the mixture was slowly dropped into an anhydrous ethanol solution (15 ml) containing (1 mmol, 108.1 mg) 5-methylpyridin-2-amine at 339 K and was then stirred for 4 h, a red solid then separated out. The product was collected by filtration and washed several times with anhydrous ethanol and dried under vacuum. Red single crystals suitable for X-ray diffraction were obtained after 4 days by slow evaporation at room temperature of an anhydrous ethanol solution of the title compound.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å or 0.96 Å (methyl) and 0.82 Å (hydroxyl) and Uiso(H) =1.2Ueq(C) or 1.2Ueq(Cmethyl and O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C14H14N2O2F(000) = 512
Mr = 242.27Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2267 reflections
a = 11.5995 (6) Åθ = 3.3–24.6°
b = 4.9546 (2) ŵ = 0.09 mm1
c = 23.9983 (12) ÅT = 296 K
β = 117.6090°Neddle, red
V = 1222.15 (10) Å30.42 × 0.10 × 0.10 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer2806 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→15
Tmin = 0.963, Tmax = 0.991k = −6→6
13275 measured reflectionsl = −31→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1232P)2 + 0.0489P] where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.3545 (2)1.1391 (4)0.42144 (10)0.0552 (6)
H1A1.43611.05290.43170.083*
H1B1.36461.25600.45530.083*
H1C1.32751.24310.38370.083*
C21.25384 (18)0.9287 (4)0.41151 (9)0.0435 (5)
C31.2184 (2)0.8629 (4)0.45776 (9)0.0518 (5)
H31.25770.94870.49660.062*
C41.1247 (2)0.6699 (4)0.44540 (10)0.0521 (5)
H41.10000.62410.47590.063*
C51.06743 (18)0.5443 (4)0.38751 (9)0.0418 (5)
C61.18963 (19)0.7932 (4)0.35514 (9)0.0470 (5)
H61.21180.83710.32360.056*
C70.92176 (17)0.2020 (4)0.32757 (8)0.0411 (5)
H70.95090.22210.29760.049*
C80.82147 (17)0.0051 (4)0.31741 (8)0.0388 (4)
C90.77601 (18)−0.0253 (4)0.36199 (9)0.0420 (5)
C100.67807 (19)−0.2169 (4)0.35134 (9)0.0454 (5)
C110.62864 (19)−0.3719 (4)0.29787 (9)0.0473 (5)
H110.5642−0.49860.29100.057*
C120.6744 (2)−0.3404 (4)0.25398 (9)0.0477 (5)
H120.6396−0.44530.21770.057*
C130.76972 (19)−0.1575 (4)0.26345 (9)0.0444 (5)
H130.8004−0.14070.23400.053*
C140.5556 (2)−0.4409 (5)0.39416 (11)0.0647 (7)
H14A0.4731−0.41660.35760.097*
H14B0.5437−0.43960.43120.097*
H14C0.5926−0.61050.39130.097*
N11.09794 (16)0.6034 (3)0.34181 (7)0.0468 (4)
N20.97078 (15)0.3485 (3)0.37709 (7)0.0439 (4)
O10.82133 (16)0.1211 (3)0.41479 (7)0.0617 (5)
H10.87220.23520.41450.093*
O20.64070 (16)−0.2284 (3)0.39775 (7)0.0662 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0492 (12)0.0508 (13)0.0651 (13)−0.0111 (10)0.0261 (10)0.0039 (10)
C20.0383 (10)0.0425 (11)0.0525 (11)−0.0024 (8)0.0235 (8)0.0047 (8)
C30.0529 (12)0.0577 (13)0.0463 (11)−0.0142 (10)0.0241 (9)−0.0060 (9)
C40.0572 (13)0.0622 (13)0.0474 (11)−0.0159 (10)0.0330 (10)−0.0029 (9)
C50.0396 (10)0.0420 (11)0.0496 (10)−0.0038 (8)0.0255 (9)0.0022 (8)
C60.0483 (11)0.0510 (12)0.0521 (11)−0.0084 (9)0.0320 (9)0.0024 (9)
C70.0359 (9)0.0466 (11)0.0447 (10)0.0008 (8)0.0220 (8)0.0051 (8)
C80.0368 (10)0.0375 (10)0.0445 (10)0.0010 (7)0.0209 (8)0.0034 (7)
C90.0426 (10)0.0428 (11)0.0457 (10)−0.0078 (8)0.0248 (8)−0.0038 (8)
C100.0443 (10)0.0465 (11)0.0553 (11)−0.0076 (8)0.0314 (9)−0.0038 (8)
C110.0422 (10)0.0428 (11)0.0562 (11)−0.0065 (8)0.0222 (9)−0.0024 (8)
C120.0497 (11)0.0462 (11)0.0452 (10)−0.0023 (9)0.0203 (9)−0.0047 (8)
C130.0465 (11)0.0476 (12)0.0445 (10)−0.0003 (8)0.0255 (9)0.0004 (8)
C140.0669 (15)0.0673 (15)0.0784 (16)−0.0255 (12)0.0493 (13)−0.0062 (12)
N10.0469 (9)0.0522 (10)0.0478 (9)−0.0090 (8)0.0274 (8)−0.0010 (7)
N20.0397 (9)0.0464 (10)0.0512 (9)−0.0083 (7)0.0257 (7)0.0000 (7)
O10.0707 (10)0.0734 (11)0.0594 (9)−0.0352 (8)0.0457 (8)−0.0245 (8)
O20.0782 (11)0.0697 (11)0.0738 (10)−0.0374 (9)0.0548 (9)−0.0209 (8)

Geometric parameters (Å, °)

C1—C21.500 (3)C8—C131.402 (3)
C1—H1A0.9600C8—C91.403 (2)
C1—H1B0.9600C9—O11.338 (2)
C1—H1C0.9600C9—C101.410 (3)
C2—C61.379 (3)C10—O21.371 (2)
C2—C31.389 (3)C10—C111.372 (3)
C3—C41.373 (3)C11—C121.391 (3)
C3—H30.9300C11—H110.9300
C4—C51.380 (3)C12—C131.365 (3)
C4—H40.9300C12—H120.9300
C5—N11.332 (2)C13—H130.9300
C5—N21.414 (2)C14—O21.418 (2)
C6—N11.342 (2)C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—N21.279 (2)C14—H14C0.9600
C7—C81.450 (3)O1—H10.8200
C7—H70.9300
C2—C1—H1A109.5C9—C8—C7120.01 (16)
C2—C1—H1B109.5O1—C9—C8122.83 (17)
H1A—C1—H1B109.5O1—C9—C10117.82 (16)
C2—C1—H1C109.5C8—C9—C10119.36 (17)
H1A—C1—H1C109.5O2—C10—C11125.75 (17)
H1B—C1—H1C109.5O2—C10—C9114.34 (17)
C6—C2—C3116.38 (17)C11—C10—C9119.91 (18)
C6—C2—C1121.39 (17)C10—C11—C12120.31 (18)
C3—C2—C1122.22 (18)C10—C11—H11119.8
C4—C3—C2119.25 (18)C12—C11—H11119.8
C4—C3—H3120.4C13—C12—C11120.83 (18)
C2—C3—H3120.4C13—C12—H12119.6
C3—C4—C5119.68 (18)C11—C12—H12119.6
C3—C4—H4120.2C12—C13—C8120.16 (17)
C5—C4—H4120.2C12—C13—H13119.9
N1—C5—C4122.84 (17)C8—C13—H13119.9
N1—C5—N2119.77 (17)O2—C14—H14A109.5
C4—C5—N2117.37 (17)O2—C14—H14B109.5
N1—C6—C2125.65 (17)H14A—C14—H14B109.5
N1—C6—H6117.2O2—C14—H14C109.5
C2—C6—H6117.2H14A—C14—H14C109.5
N2—C7—C8120.97 (17)H14B—C14—H14C109.5
N2—C7—H7119.5C5—N1—C6116.19 (16)
C8—C7—H7119.5C7—N2—C5121.88 (16)
C13—C8—C9119.41 (17)C9—O1—H1109.5
C13—C8—C7120.57 (17)C10—O2—C14117.02 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.842.5587 (19)146
C3—H3···O2i0.932.643.567 (3)175
C4—H4···O1i0.932.663.282 (2)125

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2873).

References

  • Dal, H., Suzen, Y. & Sahin, E. (2007). Spectrochim. Acta Part A, 67, 808–814. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yamada, S. (1999). Coord. Chem. Rev 192, 537–555.
  • Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography