PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2145.
Published online 2009 August 15. doi:  10.1107/S1600536809031328
PMCID: PMC2970036

2-(2-Chloro­phen­yl)-2,3-dihydro­quinazolin-4(1H)-one

Abstract

The title compound, C14H11ClN2O, was synthesized by the reaction of 2-chloro­benzaldehyde and 2-amino­benzamide in an ionic liquid. The pyrimidine ring adopts a skew-boat conformation and the two benzene rings make a dihedral angle of 87.1 (1)°. In the crystal, N—H(...)O and C—H(...)N hydrogen bonding links the mol­ecules along b.

Related literature

For quinazoline derivatives as anti­tumor agents, see: Feng et al. (2006 [triangle]); Keenan & Shakespear (2004 [triangle]); Mikiciuk-Olasik et al. (2004 [triangle]). For the biological activity of quinazoline derivatives, see: Bedi et al. (2004 [triangle]); Lin et al. (2006 [triangle]); Saleh et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2145-scheme1.jpg

Experimental

Crystal data

  • C14H11ClN2O
  • M r = 258.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2145-efi1.jpg
  • a = 6.9900 (1) Å
  • b = 8.7488 (2) Å
  • c = 10.4756 (2) Å
  • α = 100.639 (1)°
  • β = 92.726 (1)°
  • γ = 101.786 (1)°
  • V = 613.91 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 K
  • 0.47 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.901, T max = 0.950
  • 8018 measured reflections
  • 2204 independent reflections
  • 2029 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.07
  • 2204 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031328/pb2004sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031328/pb2004Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Natural Science Foundation of China (20776149) and the Natural Science Foundation (XKY2008313) of Xuzhou Institute of Technology for financial support.

supplementary crystallographic information

Comment

Quinazoline derivatives are well known compounds as antitumor agents (Feng et al., 2006; Keenan et al., 2004; Mikiciuk-Olasik et al., 2004). In addition, it was reported that some quinazoline derivatives possessed biological activities, such as antimalarial activity (Lin et al., 2006) antibacterial activity (Bedi et al., 2004) and antifungal activity (Saleh et al., 2004). We report here the crystal structure of 2-(2-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one, (I).

The X-ray crystal structure determination indicates that the pyrimidine ring in the quinazoline moiety is slightly distorted, adopting a skew-boat conformation. The atoms of C2, C3, C8 and N2 are coplanar, with the atoms N1 and C1 deviating from the defined plane by 0.256 (2) and 0.623 (2) Å, respectively. The basal plane is nearly parallel to the benzene ring (C3—C8), forming a dihedral angle of 5.4 (1) °. And is nearly perpendicular to the benzene ring (C9—C14), forming a dihedral angle of 87.7 (1) °. Two benzene rings make a dihedral angle of 87.1 (1) °.

The hydrogen bonds of N—H···O and C—H···N are presented in the crystal structure of (I) (Table 2). The intermolecular hydrogen bond (N1—H1A···O1) and hydrogen bond (C1—H1B···N2) link the adjacent molecules, forming dimmers, respectively. The hydrogen bond of N2—H2A···O1 and above hydrogen bonds link the molecules forming polymers along b (Figure 2).

Experimental

The title compound, (I), was prepared by the reaction of 2-chlorobenzaldehyde (2 mmol, 0.280 g), 2-aminobenzamide (2 mmol, 0.272 g) and ionic liquid of [Bmim]Br (2 ml) at 353 K. The isolated compound melts at 485–486 K. The single crystals suitable for X-ray diffraction were obtained by slow evaporation ethanol solution.

Refinement

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93 Å except for H1A, H1B and H2A, and with Uiso(H) = 1.2Ueq.

Figures

Fig. 1.
The molecular structure drawing for (I) showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The molecular packing diagramshowing the hydrogen-bonding network in the crystal for (I).

Crystal data

C14H11ClN2OZ = 2
Mr = 258.70F(000) = 268
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Melting point = 485–486 K
a = 6.9900 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7488 (2) ÅCell parameters from 5614 reflections
c = 10.4756 (2) Åθ = 2.4–27.3°
α = 100.639 (1)°µ = 0.30 mm1
β = 92.726 (1)°T = 296 K
γ = 101.786 (1)°Block, colourless
V = 613.91 (2) Å30.47 × 0.15 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer2204 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan (Jacobson, 1998)h = −8→8
Tmin = 0.901, Tmax = 0.950k = −10→10
8018 measured reflectionsl = −12→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082w = 1/[σ2(Fo2) + (0.0395P)2 + 0.1722P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2204 reflectionsΔρmax = 0.20 e Å3
176 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.16029 (5)0.69778 (5)0.05650 (4)0.05390 (17)
N20.50252 (18)1.00296 (13)0.18929 (11)0.0344 (3)
C90.53903 (19)0.72253 (15)0.14393 (12)0.0301 (3)
O11.08313 (14)1.09067 (13)0.17031 (11)0.0497 (3)
C20.9066 (2)1.04662 (16)0.18541 (14)0.0370 (3)
C80.61534 (19)1.08206 (15)0.30290 (12)0.0319 (3)
N10.78205 (17)0.94682 (14)0.09040 (12)0.0367 (3)
C140.3498 (2)0.62845 (16)0.12560 (13)0.0345 (3)
C10.57649 (19)0.88323 (15)0.10227 (13)0.0315 (3)
C100.6833 (2)0.66331 (18)0.20113 (14)0.0411 (3)
H10A0.81150.72300.21530.049*
C130.3048 (2)0.48197 (17)0.16089 (15)0.0451 (4)
H13A0.17690.42170.14690.054*
C30.8198 (2)1.10531 (17)0.30508 (13)0.0384 (3)
C70.5326 (2)1.14921 (18)0.41197 (14)0.0419 (3)
H7A0.39701.13390.41200.050*
C110.6398 (3)0.5163 (2)0.23777 (16)0.0521 (4)
H11A0.73850.47860.27650.063*
C40.9362 (2)1.1958 (2)0.41504 (17)0.0613 (5)
H4A1.07201.21220.41630.074*
C120.4514 (3)0.42650 (18)0.21692 (16)0.0517 (4)
H12A0.42320.32770.24090.062*
C60.6509 (3)1.2379 (2)0.51937 (16)0.0582 (5)
H6A0.59441.28280.59160.070*
C50.8526 (3)1.2615 (3)0.52208 (17)0.0722 (6)
H5A0.93121.32140.59570.087*
H2A0.382 (2)0.9860 (18)0.1921 (14)0.037 (4)*
H1A0.823 (2)0.9236 (19)0.0184 (18)0.045 (4)*
H1B0.510 (2)0.8682 (16)0.0185 (14)0.027 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0326 (2)0.0464 (2)0.0788 (3)0.00346 (16)−0.01097 (18)0.01200 (19)
N20.0259 (6)0.0347 (6)0.0423 (7)0.0069 (5)0.0038 (5)0.0067 (5)
C90.0304 (7)0.0324 (6)0.0270 (6)0.0067 (5)0.0065 (5)0.0041 (5)
O10.0298 (5)0.0554 (7)0.0566 (7)−0.0007 (5)0.0140 (5)0.0007 (5)
C20.0310 (7)0.0380 (7)0.0418 (8)0.0051 (6)0.0087 (6)0.0084 (6)
C80.0330 (7)0.0308 (6)0.0347 (7)0.0076 (5)0.0059 (5)0.0119 (5)
N10.0338 (6)0.0396 (6)0.0339 (6)0.0012 (5)0.0126 (5)0.0050 (5)
C140.0329 (7)0.0334 (7)0.0350 (7)0.0055 (6)0.0015 (5)0.0034 (5)
C10.0292 (7)0.0347 (7)0.0298 (7)0.0041 (5)0.0032 (5)0.0073 (5)
C100.0342 (8)0.0447 (8)0.0456 (8)0.0101 (6)0.0034 (6)0.0105 (6)
C130.0473 (9)0.0339 (7)0.0481 (9)−0.0027 (6)0.0017 (7)0.0063 (6)
C30.0327 (7)0.0448 (8)0.0368 (7)0.0081 (6)0.0049 (6)0.0060 (6)
C70.0395 (8)0.0473 (8)0.0431 (8)0.0148 (6)0.0130 (6)0.0118 (6)
C110.0576 (10)0.0484 (9)0.0569 (10)0.0218 (8)−0.0019 (8)0.0175 (7)
C40.0382 (9)0.0858 (13)0.0502 (10)0.0114 (9)−0.0030 (7)−0.0067 (9)
C120.0676 (11)0.0326 (7)0.0546 (9)0.0063 (7)0.0013 (8)0.0139 (7)
C60.0641 (11)0.0729 (12)0.0372 (8)0.0220 (9)0.0126 (7)0.0002 (8)
C50.0615 (12)0.0989 (15)0.0431 (10)0.0171 (11)−0.0070 (8)−0.0161 (9)

Geometric parameters (Å, °)

Cl1—C141.7453 (14)C10—C111.388 (2)
N2—C81.3787 (17)C10—H10A0.9300
N2—C11.4523 (17)C13—C121.372 (2)
N2—H2A0.831 (16)C13—H13A0.9300
C9—C101.3839 (19)C3—C41.388 (2)
C9—C141.3915 (19)C7—C61.371 (2)
C9—C11.5240 (18)C7—H7A0.9300
O1—C21.2421 (17)C11—C121.373 (2)
C2—N11.3405 (18)C11—H11A0.9300
C2—C31.4716 (19)C4—C51.375 (2)
C8—C71.3924 (19)C4—H4A0.9300
C8—C31.4001 (19)C12—H12A0.9300
N1—C11.4511 (17)C6—C51.380 (3)
N1—H1A0.824 (18)C6—H6A0.9300
C14—C131.378 (2)C5—H5A0.9300
C1—H1B0.948 (14)
C8—N2—C1118.48 (11)C11—C10—H10A119.5
C8—N2—H2A116.8 (10)C12—C13—C14118.97 (14)
C1—N2—H2A116.0 (10)C12—C13—H13A120.5
C10—C9—C14116.97 (12)C14—C13—H13A120.5
C10—C9—C1123.74 (12)C4—C3—C8119.58 (13)
C14—C9—C1119.28 (11)C4—C3—C2121.32 (14)
O1—C2—N1121.40 (13)C8—C3—C2118.80 (12)
O1—C2—C3122.54 (13)C6—C7—C8120.05 (14)
N1—C2—C3116.00 (12)C6—C7—H7A120.0
N2—C8—C7121.83 (12)C8—C7—H7A120.0
N2—C8—C3118.83 (12)C12—C11—C10120.13 (14)
C7—C8—C3119.18 (13)C12—C11—H11A119.9
C2—N1—C1124.90 (12)C10—C11—H11A119.9
C2—N1—H1A117.9 (12)C5—C4—C3120.63 (16)
C1—N1—H1A117.1 (12)C5—C4—H4A119.7
C13—C14—C9122.57 (13)C3—C4—H4A119.7
C13—C14—Cl1118.17 (11)C13—C12—C11120.28 (14)
C9—C14—Cl1119.26 (10)C13—C12—H12A119.9
N1—C1—N2108.17 (11)C11—C12—H12A119.9
N1—C1—C9113.41 (11)C7—C6—C5121.06 (15)
N2—C1—C9112.80 (10)C7—C6—H6A119.5
N1—C1—H1B106.9 (8)C5—C6—H6A119.5
N2—C1—H1B107.8 (8)C4—C5—C6119.49 (16)
C9—C1—H1B107.5 (8)C4—C5—H5A120.3
C9—C10—C11121.08 (14)C6—C5—H5A120.3
C9—C10—H10A119.5
C1—N2—C8—C7−154.80 (12)Cl1—C14—C13—C12−179.15 (12)
C1—N2—C8—C329.94 (17)N2—C8—C3—C4174.78 (14)
O1—C2—N1—C1176.67 (13)C7—C8—C3—C4−0.6 (2)
C3—C2—N1—C1−5.9 (2)N2—C8—C3—C20.93 (19)
C10—C9—C14—C13−0.6 (2)C7—C8—C3—C2−174.45 (13)
C1—C9—C14—C13−179.95 (12)O1—C2—C3—C4−9.3 (2)
C10—C9—C14—Cl1178.92 (10)N1—C2—C3—C4173.25 (15)
C1—C9—C14—Cl1−0.48 (16)O1—C2—C3—C8164.39 (14)
C2—N1—C1—N233.01 (17)N1—C2—C3—C8−13.0 (2)
C2—N1—C1—C9−92.90 (15)N2—C8—C7—C6−174.73 (14)
C8—N2—C1—N1−44.49 (15)C3—C8—C7—C60.5 (2)
C8—N2—C1—C981.78 (14)C9—C10—C11—C120.3 (2)
C10—C9—C1—N117.84 (18)C8—C3—C4—C50.6 (3)
C14—C9—C1—N1−162.81 (11)C2—C3—C4—C5174.27 (18)
C10—C9—C1—N2−105.57 (14)C14—C13—C12—C110.3 (2)
C14—C9—C1—N273.78 (15)C10—C11—C12—C13−0.6 (3)
C14—C9—C10—C110.2 (2)C8—C7—C6—C5−0.4 (3)
C1—C9—C10—C11179.58 (13)C3—C4—C5—C6−0.5 (3)
C9—C14—C13—C120.3 (2)C7—C6—C5—C40.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.831 (16)2.461 (16)3.1847 (16)146.2 (14)
N1—H1A···O1ii0.824 (18)2.103 (18)2.9146 (16)168.4 (16)
C1—H1B···N2iii0.948 (14)2.635 (14)3.4369 (17)142.6 (11)

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2004).

References

  • Bedi, P. M. S., Kumar, V. & Mahajan, M. P. (2004). Bioorg. Med. Chem. Lett.14, 5211–5213. [PubMed]
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feng, Z., Chen, X., Guo, Z., Jiang, Y., Li, J., Zhu, F., Guo, Y., Li, Y. & Fu, J. (2006). Chinese Patent CN 1854130 A, 1 Nov 2006.
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Keenan, T. P. & Shakespear, W. C. (2004). PCT Int. Appl. WO 2004058267 A1, 15 Jul 2004.
  • Lin, A. J., Guan, J., Zhang, Q. & Skillman, D. R. (2006). US Patent Appl. Publ. US 2006094736 A1, 4 May 2006.
  • Mikiciuk-Olasik, E., Blaszczak-Swiatkiewiz, K., Zurek, E., Krajewska, U., Rozalski, M., Kruszynski, R. & Bartczak, T. J. (2004). Arch. Pharm.337, 239–246. [PubMed]
  • Saleh, M. A., Hafez, Y. A., Abdel-Hay, F. E. & Gad, W. I. (2004). Phosphorus Sulfur Silicon Relat. Elem.179, 411–426.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography