PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2128.
Published online 2009 August 12. doi:  10.1107/S1600536809031110
PMCID: PMC2970031

4,11-Diaza-1,8-diazo­niacyclo­tetra­decane dichloride hemihydrate

Abstract

In the title compound, C10H26N4 2+·2Cl·0.5H2O, the cyclam (1,4,8,11-tetra­azacyclo­tetra­decane) dication adopts an endodentate conformation which my be inflenced by intra­molecular N—H(...)N hydrogen bonding. In the crystal structure, the components are linked by N—H(...)Cl and O—H(...)Cl hydrogen bonds into chains along [100]. The water molecule is disordered over two sites in a 50:50 ratio.

Related literature

For the crystal structure of [H2(cyclam)](ClO4)2, see: Nave & Truter (1974 [triangle]). For the crystal structures of [H4(cyclam)]X·nH2O [X = Cl4, Br4, (ClO4)4, (SCN)4, (SO4)2 or (p-CH3C6H4SO3)4], see: Robinson et al. (1989 [triangle]); Subramanian & Zaworotko (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2128-scheme1.jpg

Experimental

Crystal data

  • C10H26N4 2+·2Cl·0.5H2O
  • M r = 282.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2128-efi1.jpg
  • a = 6.827 (7) Å
  • b = 14.071 (16) Å
  • c = 16.055 (16) Å
  • β = 97.84 (3)°
  • V = 1528 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 293 K
  • 0.25 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.806, T max = 0.959
  • 8725 measured reflections
  • 3136 independent reflections
  • 1280 reflections with I > 2σ(I)
  • R int = 0.110

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.151
  • S = 0.98
  • 3136 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031110/lh2872sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031110/lh2872Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, C10H26N42+.2Cl-.0.5H2O, consists of a doubly protonated 1,4,8,11-tetraazacyclotetradecane (cyclam) dication, two chloride anions and one half of a solvent water molecule (Fig. 1). The macrocyclic dication contains two protonated N atoms and two secondary amine N atoms, and is in an endodentate conformation with the N atoms oriented towards the centre of the macrocyclic cavity. The conformation of the dication may be influnced by intramolecular N—H···N hydrogen bonding (Table 1 and Fig. 2). The N2—C4—C5—N3 and N4—C9—C10—N1 torsion angles [-62.4 (5)° and 62.1 (5)°, respectively] display the gauche conformation for these two groups within the dication. A similar conformation is also observed in the structures cyclam (Robinson et al., 1989) and [H2(cyclam)](ClO4)2 (Nave & Truter, 1974). Unlike cyclam and the dication, the tetracation, [H4(cyclam)]4+, adopts an exodentate conformation, in which all four N atoms are oriented away from the ring cavity, occupying positions as far away as possible from each other on the ring periphery (Robinson et al., 1989; Subramanian & Zaworotko, 1995). The components of the crystal structure are linked by N—H···Cl and O—H···Cl hydrogen bonds into one-dimensional chains along [100] (Table 1 and Fig. 2).

Experimental

Single crystals of the title compound were unexpectedly obtained as a byproduct of an attempted preparation of a Pd(II) complex by reacting Na2PdCl4 (0.073 g, 0.25 mmol) and 1,4,8,11-tetraazacyclotetradecane (0.100 g, 0.50 mmol) in H2O (10 ml) under reflux for 2 h. Crystals suitable for X-ray analysis were obtained by slow evaporation of a CH2Cl2 solution of the white reaction product.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.97 Å, N—H = 0.86 Å, O—H = 0.83 Å and Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O)].

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C10H26N42+·2Cl·0.5H2OF(000) = 612
Mr = 282.25Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 418 reflections
a = 6.827 (7) Åθ = 2.6–16.2°
b = 14.071 (16) ŵ = 0.41 mm1
c = 16.055 (16) ÅT = 293 K
β = 97.84 (3)°Needle, colorless
V = 1528 (3) Å30.25 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer3136 independent reflections
Radiation source: fine-focus sealed tube1280 reflections with I > 2σ(I)
graphiteRint = 0.110
[var phi] and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −5→8
Tmin = 0.806, Tmax = 0.959k = −17→17
8725 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0321P)2] where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.7249 (6)0.4173 (2)0.2123 (2)0.0456 (11)
H110.62270.42900.23650.055*
N20.5366 (5)0.2363 (2)0.1733 (2)0.0418 (10)
H210.42330.23970.19090.050*
H220.62920.26110.20840.050*
N30.8016 (5)0.1650 (2)0.3153 (2)0.0414 (10)
H310.90710.16040.29180.050*
N40.9882 (5)0.3461 (3)0.3557 (2)0.0434 (10)
H410.90660.31870.31750.052*
H421.09600.34100.33390.052*
C10.6795 (8)0.4357 (3)0.1219 (3)0.0552 (15)
H1A0.79380.42010.09470.066*
H1B0.65150.50280.11290.066*
C20.5032 (7)0.3779 (4)0.0822 (3)0.0567 (15)
H2A0.39020.39280.11050.068*
H2B0.47090.39640.02380.068*
C30.5392 (7)0.2717 (4)0.0867 (3)0.0526 (14)
H3A0.43770.23950.04880.063*
H3B0.66620.25750.06890.063*
C40.5882 (7)0.1337 (3)0.1843 (3)0.0531 (14)
H4A0.70300.11960.15700.064*
H4B0.47890.09500.15850.064*
C50.6317 (7)0.1110 (3)0.2767 (3)0.0535 (14)
H5A0.51750.12630.30400.064*
H5B0.65820.04360.28400.064*
C60.8527 (8)0.1452 (4)0.4051 (3)0.0612 (15)
H6A0.88300.07820.41270.073*
H6B0.73950.15920.43350.073*
C71.0288 (8)0.2034 (4)0.4450 (3)0.0596 (15)
H7A1.06240.18390.50310.071*
H7B1.14140.18950.41610.071*
C80.9932 (8)0.3095 (4)0.4424 (3)0.0559 (14)
H8A0.86860.32340.46250.067*
H8B1.09770.34120.47920.067*
C90.9384 (7)0.4482 (3)0.3442 (3)0.0520 (14)
H9A1.04820.48670.36990.062*
H9B0.82370.46300.37140.062*
C100.8954 (7)0.4709 (3)0.2517 (3)0.0513 (14)
H10A0.86970.53840.24440.062*
H10B1.00990.45530.22460.062*
Cl10.08543 (19)0.22997 (10)0.17133 (7)0.0588 (4)
Cl20.4464 (2)0.35637 (10)0.36069 (8)0.0720 (5)
O10.6491 (12)0.0033 (6)0.0003 (5)0.105 (3)0.50
H1O0.6316−0.03550.03710.157*0.50
H2O0.60300.0408−0.03700.157*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.042 (2)0.049 (3)0.047 (3)−0.002 (2)0.012 (2)0.002 (2)
N20.039 (2)0.047 (3)0.039 (2)−0.004 (2)0.002 (2)−0.0032 (19)
N30.039 (2)0.043 (3)0.044 (3)−0.004 (2)0.011 (2)0.0023 (19)
N40.041 (2)0.054 (3)0.035 (2)−0.005 (2)0.005 (2)−0.0072 (19)
C10.065 (4)0.051 (4)0.050 (4)0.004 (3)0.012 (3)0.012 (3)
C20.053 (4)0.074 (4)0.041 (3)0.010 (3)−0.002 (3)0.011 (3)
C30.049 (3)0.073 (4)0.036 (3)−0.002 (3)0.004 (3)−0.006 (3)
C40.059 (4)0.043 (4)0.057 (4)0.000 (3)0.006 (3)−0.007 (3)
C50.051 (3)0.039 (3)0.073 (4)−0.013 (3)0.016 (3)0.001 (3)
C60.064 (4)0.072 (4)0.049 (4)−0.002 (3)0.012 (3)0.012 (3)
C70.061 (4)0.075 (4)0.041 (3)0.008 (3)0.003 (3)0.015 (3)
C80.055 (4)0.076 (4)0.034 (3)−0.001 (3)−0.001 (3)−0.003 (3)
C90.047 (3)0.041 (3)0.066 (4)−0.005 (3)0.004 (3)−0.007 (3)
C100.049 (3)0.039 (3)0.067 (4)−0.003 (3)0.012 (3)0.009 (3)
Cl10.0451 (8)0.0785 (10)0.0542 (9)−0.0012 (7)0.0115 (7)0.0022 (7)
Cl20.0491 (9)0.0979 (12)0.0713 (10)−0.0110 (8)0.0162 (8)−0.0200 (8)
O10.111 (7)0.116 (7)0.088 (6)0.008 (6)0.020 (6)0.047 (5)

Geometric parameters (Å, °)

N1—C101.457 (6)C3—H3B0.9700
N1—C11.466 (5)C4—C51.508 (6)
N1—H110.8600C4—H4A0.9700
N2—C31.479 (5)C4—H4B0.9700
N2—C41.491 (5)C5—H5A0.9700
N2—H210.8600C5—H5B0.9700
N2—H220.8600C6—C71.522 (6)
N3—C51.453 (5)C6—H6A0.9700
N3—C61.463 (5)C6—H6B0.9700
N3—H310.8601C7—C81.512 (6)
N4—C81.480 (5)C7—H7A0.9700
N4—C91.483 (5)C7—H7B0.9700
N4—H410.8600C8—H8A0.9700
N4—H420.8600C8—H8B0.9700
C1—C21.519 (6)C9—C101.507 (6)
C1—H1A0.9700C9—H9A0.9700
C1—H1B0.9700C9—H9B0.9700
C2—C31.515 (6)C10—H10A0.9700
C2—H2A0.9700C10—H10B0.9700
C2—H2B0.9700O1—H1O0.8253
C3—H3A0.9700O1—H2O0.8266
C10—N1—C1112.8 (4)C5—C4—H4B109.8
C10—N1—H11110.7H4A—C4—H4B108.2
C1—N1—H11109.8N3—C5—C4110.3 (4)
C3—N2—C4113.8 (3)N3—C5—H5A109.6
C3—N2—H21114.6C4—C5—H5A109.6
C4—N2—H21102.9N3—C5—H5B109.6
C3—N2—H22112.1C4—C5—H5B109.6
C4—N2—H22100.0H5A—C5—H5B108.1
H21—N2—H22112.2N3—C6—C7112.4 (4)
C5—N3—C6112.9 (4)N3—C6—H6A109.1
C5—N3—H31116.2C7—C6—H6A109.1
C6—N3—H31108.4N3—C6—H6B109.1
C8—N4—C9115.4 (3)C7—C6—H6B109.1
C8—N4—H41116.4H6A—C6—H6B107.9
C9—N4—H41103.3C8—C7—C6113.9 (4)
C8—N4—H42116.2C8—C7—H7A108.8
C9—N4—H42103.0C6—C7—H7A108.8
H41—N4—H42100.4C8—C7—H7B108.8
N1—C1—C2111.6 (4)C6—C7—H7B108.8
N1—C1—H1A109.3H7A—C7—H7B107.7
C2—C1—H1A109.3N4—C8—C7110.6 (4)
N1—C1—H1B109.3N4—C8—H8A109.5
C2—C1—H1B109.3C7—C8—H8A109.5
H1A—C1—H1B108.0N4—C8—H8B109.5
C3—C2—C1113.2 (4)C7—C8—H8B109.5
C3—C2—H2A108.9H8A—C8—H8B108.1
C1—C2—H2A108.9N4—C9—C10109.8 (4)
C3—C2—H2B108.9N4—C9—H9A109.7
C1—C2—H2B108.9C10—C9—H9A109.7
H2A—C2—H2B107.7N4—C9—H9B109.7
N2—C3—C2110.7 (4)C10—C9—H9B109.7
N2—C3—H3A109.5H9A—C9—H9B108.2
C2—C3—H3A109.5N1—C10—C9110.8 (4)
N2—C3—H3B109.5N1—C10—H10A109.5
C2—C3—H3B109.5C9—C10—H10A109.5
H3A—C3—H3B108.1N1—C10—H10B109.5
N2—C4—C5109.5 (4)C9—C10—H10B109.5
N2—C4—H4A109.8H10A—C10—H10B108.1
C5—C4—H4A109.8H1O—O1—H2O149.6
N2—C4—H4B109.8
C10—N1—C1—C2179.2 (4)C5—N3—C6—C7−179.1 (4)
N1—C1—C2—C3−63.7 (5)N3—C6—C7—C862.9 (6)
C4—N2—C3—C2−175.0 (4)C9—N4—C8—C7175.4 (4)
C1—C2—C3—N273.6 (5)C6—C7—C8—N4−71.8 (5)
C3—N2—C4—C5165.8 (4)C8—N4—C9—C10−167.9 (4)
C6—N3—C5—C4−179.4 (4)C1—N1—C10—C9−179.0 (4)
N2—C4—C5—N3−62.4 (5)N4—C9—C10—N162.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···Cl20.862.673.356 (5)138
N2—H21···Cl10.862.293.077 (5)153
N2—H22···N10.862.292.882 (6)126
N2—H22···N30.862.372.890 (5)119
N3—H31···Cl1i0.862.613.340 (4)143
N4—H41···N10.862.402.899 (5)118
N4—H41···N30.862.282.882 (6)127
N4—H42···Cl2i0.862.383.122 (5)144
O1—H1O···Cl2ii0.832.353.175 (8)175
O1—H2O···Cl2iii0.832.343.160 (8)175

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2872).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2351–2354.
  • Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem.19, 287–294.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem.73, 414–424.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography