PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2095.
Published online 2009 August 8. doi:  10.1107/S1600536809030359
PMCID: PMC2970030

9-{4-[(E)-2-(4,6-Dimethyl-1,3,5-triazin-2-yl)ethen­yl]phen­yl}-9H-carbazole

Abstract

In the crystal structure of the title compound, C25H20N4, the triazinyl ring is nearly coplanar with the planar (r.m.s. deviation = 0.028 Å) phenyl­ethenyl unit, the twist being only 5.8 (2)°; however, the planar carbazolyl unit (r.m.s. deviation = 0.008 Å) is twisted by 47.8 (1)° with respect to the phenyl­ethenyl unit. The nonplanar nature of the mol­ecule explains the phenomenon of light emission at short wavelengths in the solid state but at long wavelengths in solution.

Related literature

For background literature on donor–π-acceptor chromophores, see: Cui et al. (2003 [triangle], 2004 [triangle]); Kannan et al. (2004 [triangle]); Maury & Bozec (2005 [triangle]); Zhong et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2095-scheme1.jpg

Experimental

Crystal data

  • C25H20N4
  • M r = 376.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2095-efi1.jpg
  • a = 8.0415 (8) Å
  • b = 15.716 (2) Å
  • c = 16.098 (1) Å
  • V = 2034.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.42 × 0.28 × 0.16 mm

Data collection

  • Siemens P4 four-circle diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.901, T max = 0.988
  • 2991 measured reflections
  • 2291 independent reflections
  • 1288 reflections with I > 2σ(I)
  • R int = 0.026
  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.160
  • S = 1.00
  • 2291 reflections
  • 265 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030359/bt5017sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030359/bt5017Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20676074) and the Foundation for Excellent Middle/Young Scientists of Shandong Province (grant No. 2005BS11011).

supplementary crystallographic information

Comment

s-Triazine, which has a conjugated structure is commonly derivatized in the design of chromophores that display specific physical properties (Cui et al., 2003; Maury et al., 2005; Zhong et al., 2008), particularly two-photon absorption (Cui et al., 2004; Kannan et al., 2004). The title compound (Fig. 1, Scheme 1) exemplifies a donor-π-acceptor compound with a carbazolyl donor and an s-triazinyl acceptor. It emits blue light in solid state and yellow-green light in solution. However, this property is unusual as most compounds show a bathochromic shift of fluorescence in solid state relative to their emission in solution.

An intramolecular charge transfer (ICT) axis runs from atom N2 to atom N4. The phenylethenyl unit is almost coplanar with the triazinyl ring. However, the carbazolyl unit is severely twisted with respect to the phenylethenyl and triazinyl units, so that conjugation is poor. Accordingly, such a poorly-conjugated molecule can only emit at a short wavelength (in the solid state) whereas in solution, the molecule is probably freed from strain and can achieve planarity. Consequently, it emits at longer wavelengths. The molecules are packed such that the axes of one half the number molecules are aligned in one direction whereas those of the other half are aligned approximately perpendicular to it (Fig. 2).

Experimental

4-N-Carbazolylbenzaldehyde (2.03 g, 7.5 mmol) in methanol (30 ml) was added to 2,4,6-trimethyl-s-triazine (1.85 g, 15 mmol) and potassium hydroxide (0.5 g) in methanol (50 ml). The mixture was heated for 24 h. The solvent was removed and the residue was purified by column chromatography on silica gel by using benzene/ethanol (10/1) as eluent. Crystals were obtained by recrystallization from a benzene/ethanol solution of the compound.

Refinement

Due to the absence of anomalous scatterers, 1509 Friedel pairs were merged. Hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms, with C–H 0.93–0.96 Å and Uiso(H) set to 1.2–1.5Ueq(C).

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of C25H20N4 with displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Anisotropic displacement ellipsoid plot (Barbour, 2001) depicting the alignment of four molecules in the unit cell.

Crystal data

C25H20N4F(000) = 792
Mr = 376.45Dx = 1.229 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 40 reflections
a = 8.0415 (8) Åθ = 4.6–12.4°
b = 15.716 (2) ŵ = 0.07 mm1
c = 16.098 (1) ÅT = 293 K
V = 2034.4 (3) Å3Prism, pale green
Z = 40.42 × 0.28 × 0.16 mm

Data collection

Siemens P4 four-circle diffractometer1288 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 26.0°, θmin = 1.8°
ω scansh = −1→9
Absorption correction: ψ scan (North et al., 1968)k = −19→1
Tmin = 0.901, Tmax = 0.988l = −19→1
2991 measured reflections3 standard reflections every 97 reflections
2291 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.160w = 1/[σ2(Fo2) + (0.0785P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2291 reflectionsΔρmax = 0.26 e Å3
265 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.3440 (7)0.5461 (3)0.7650 (3)0.0774 (15)
N20.2899 (6)0.4809 (2)0.6348 (2)0.0627 (12)
N30.4255 (6)0.4024 (3)0.7419 (3)0.0659 (12)
N40.3597 (5)0.0613 (2)0.3022 (2)0.0511 (11)
C10.2848 (8)0.5466 (3)0.6880 (4)0.0732 (17)
C20.4126 (8)0.4724 (4)0.7893 (3)0.0727 (17)
C30.3621 (7)0.4108 (3)0.6658 (3)0.0584 (14)
C40.2098 (9)0.6278 (3)0.6563 (4)0.091 (2)
H4A0.12030.64480.69210.137*
H4B0.16800.61900.60110.137*
H4C0.29320.67150.65540.137*
C50.4801 (8)0.4663 (4)0.8757 (3)0.097 (2)
H5A0.49460.40760.89030.146*
H5B0.40360.49250.91370.146*
H5C0.58530.49500.87850.146*
C60.3767 (7)0.3359 (3)0.6121 (3)0.0563 (13)
H60.42720.28750.63370.068*
C70.3217 (7)0.3333 (3)0.5341 (3)0.0539 (12)
H70.27040.38230.51440.065*
C80.3331 (7)0.2616 (3)0.4757 (3)0.0498 (12)
C90.2847 (7)0.2736 (3)0.3941 (3)0.0545 (13)
H90.24750.32690.37710.065*
C100.2910 (7)0.2076 (3)0.3373 (3)0.0544 (13)
H100.25590.21660.28300.065*
C110.3490 (6)0.1284 (3)0.3607 (3)0.0471 (12)
C120.3989 (7)0.1159 (3)0.4417 (3)0.0537 (12)
H120.43890.06300.45810.064*
C130.3898 (7)0.1816 (3)0.4988 (3)0.0563 (13)
H130.42230.17200.55340.068*
C140.4250 (6)0.0677 (3)0.2221 (3)0.0503 (12)
C150.5018 (7)0.1357 (3)0.1836 (3)0.0630 (14)
H150.51470.18750.21080.076*
C160.5584 (7)0.1243 (4)0.1036 (3)0.0700 (15)
H160.61040.16930.07660.084*
C170.5401 (7)0.0476 (4)0.0625 (3)0.0712 (16)
H170.57850.04190.00830.085*
C180.4658 (6)−0.0198 (4)0.1013 (3)0.0636 (15)
H180.4539−0.07130.07350.076*
C190.4080 (6)−0.0115 (3)0.1823 (3)0.0521 (12)
C200.3274 (6)−0.0680 (3)0.2402 (3)0.0520 (12)
C210.2764 (7)−0.1526 (3)0.2366 (3)0.0662 (15)
H210.2946−0.18440.18880.079*
C220.2003 (8)−0.1884 (3)0.3032 (3)0.0733 (16)
H220.1661−0.24480.30060.088*
C230.1725 (7)−0.1418 (3)0.3754 (3)0.0688 (15)
H230.1202−0.16750.42040.083*
C240.2220 (7)−0.0573 (3)0.3811 (3)0.0624 (14)
H240.2028−0.02600.42910.075*
C250.3004 (6)−0.0213 (3)0.3137 (3)0.0520 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.088 (4)0.069 (3)0.075 (3)−0.020 (3)0.025 (3)−0.033 (3)
N20.075 (3)0.049 (2)0.065 (2)−0.009 (2)0.021 (3)−0.010 (2)
N30.077 (3)0.064 (3)0.056 (2)−0.019 (3)0.017 (3)−0.019 (2)
N40.064 (3)0.044 (2)0.045 (2)−0.002 (2)0.001 (2)−0.0078 (17)
C10.081 (4)0.057 (3)0.081 (4)−0.021 (3)0.031 (4)−0.025 (3)
C20.075 (4)0.083 (4)0.060 (3)−0.030 (4)0.023 (3)−0.023 (3)
C30.067 (4)0.055 (3)0.053 (3)−0.015 (3)0.017 (3)−0.013 (2)
C40.108 (5)0.053 (3)0.114 (5)0.003 (3)0.038 (5)−0.016 (3)
C50.099 (5)0.126 (5)0.066 (4)−0.037 (4)0.013 (4)−0.041 (4)
C60.072 (4)0.047 (3)0.050 (3)−0.008 (3)0.011 (3)−0.009 (2)
C70.065 (3)0.043 (2)0.053 (3)−0.005 (3)0.008 (3)−0.004 (2)
C80.060 (3)0.041 (2)0.049 (3)−0.005 (2)0.004 (3)−0.007 (2)
C90.071 (4)0.040 (2)0.052 (3)0.006 (3)0.001 (3)−0.005 (2)
C100.071 (3)0.047 (3)0.046 (2)0.004 (3)−0.002 (3)−0.005 (2)
C110.056 (3)0.043 (2)0.043 (2)0.000 (2)0.001 (2)−0.008 (2)
C120.071 (3)0.042 (2)0.048 (3)0.004 (3)−0.006 (3)−0.006 (2)
C130.074 (4)0.051 (3)0.043 (2)−0.001 (3)−0.004 (3)−0.007 (2)
C140.052 (3)0.054 (3)0.044 (3)0.006 (3)0.000 (2)−0.006 (2)
C150.074 (4)0.063 (3)0.051 (3)−0.003 (3)0.002 (3)−0.006 (3)
C160.077 (4)0.084 (4)0.049 (3)−0.005 (4)0.007 (3)−0.001 (3)
C170.074 (4)0.094 (4)0.045 (3)0.007 (4)0.003 (3)−0.006 (3)
C180.064 (4)0.076 (3)0.050 (3)0.011 (3)−0.006 (3)−0.026 (3)
C190.051 (3)0.057 (3)0.048 (3)0.008 (3)−0.007 (2)−0.010 (2)
C200.053 (3)0.047 (3)0.056 (3)0.006 (2)−0.009 (3)−0.012 (2)
C210.072 (4)0.054 (3)0.072 (3)0.004 (3)−0.011 (3)−0.019 (3)
C220.091 (4)0.047 (3)0.082 (4)−0.001 (3)−0.005 (4)−0.007 (3)
C230.078 (4)0.057 (3)0.072 (3)−0.004 (3)0.008 (3)0.003 (3)
C240.073 (4)0.049 (3)0.065 (3)0.003 (3)0.007 (3)−0.008 (2)
C250.057 (3)0.044 (2)0.055 (3)0.004 (2)−0.005 (3)−0.004 (2)

Geometric parameters (Å, °)

N1—C11.328 (7)C10—H100.9300
N1—C21.342 (7)C11—C121.378 (6)
N2—C11.341 (5)C12—C131.384 (6)
N2—C31.341 (6)C12—H120.9300
N3—C31.333 (6)C13—H130.9300
N3—C21.342 (6)C14—C151.382 (6)
N4—C251.396 (6)C14—C191.406 (6)
N4—C141.396 (5)C15—C161.378 (6)
N4—C111.416 (5)C15—H150.9300
C1—C41.500 (7)C16—C171.382 (7)
C2—C51.496 (8)C16—H160.9300
C3—C61.465 (6)C17—C181.367 (7)
C4—H4A0.9600C17—H170.9300
C4—H4B0.9600C18—C191.391 (6)
C4—H4C0.9600C18—H180.9300
C5—H5A0.9600C19—C201.441 (6)
C5—H5B0.9600C20—C211.393 (6)
C5—H5C0.9600C20—C251.408 (6)
C6—C71.332 (6)C21—C221.357 (7)
C6—H60.9300C21—H210.9300
C7—C81.471 (5)C22—C231.392 (7)
C7—H70.9300C22—H220.9300
C8—C91.383 (6)C23—C241.389 (6)
C8—C131.388 (6)C23—H230.9300
C9—C101.383 (6)C24—C251.377 (6)
C9—H90.9300C24—H240.9300
C10—C111.382 (6)
C1—N1—C2115.1 (4)C10—C11—N4120.6 (4)
C1—N2—C3114.1 (4)C11—C12—C13120.4 (4)
C3—N3—C2114.3 (5)C11—C12—H12119.8
C25—N4—C14108.5 (4)C13—C12—H12119.8
C25—N4—C11125.8 (4)C12—C13—C8121.0 (4)
C14—N4—C11125.7 (4)C12—C13—H13119.5
N1—C1—N2125.4 (5)C8—C13—H13119.5
N1—C1—C4117.8 (5)C15—C14—N4129.6 (4)
N2—C1—C4116.7 (5)C15—C14—C19121.6 (4)
N3—C2—N1125.0 (5)N4—C14—C19108.8 (4)
N3—C2—C5116.6 (6)C16—C15—C14117.8 (5)
N1—C2—C5118.3 (5)C16—C15—H15121.1
N3—C3—N2126.1 (4)C14—C15—H15121.1
N3—C3—C6115.6 (5)C15—C16—C17121.8 (5)
N2—C3—C6118.4 (4)C15—C16—H16119.1
C1—C4—H4A109.5C17—C16—H16119.1
C1—C4—H4B109.5C18—C17—C16120.2 (5)
H4A—C4—H4B109.5C18—C17—H17119.9
C1—C4—H4C109.5C16—C17—H17119.9
H4A—C4—H4C109.5C17—C18—C19120.1 (5)
H4B—C4—H4C109.5C17—C18—H18120.0
C2—C5—H5A109.5C19—C18—H18120.0
C2—C5—H5B109.5C18—C19—C14118.6 (5)
H5A—C5—H5B109.5C18—C19—C20134.3 (5)
C2—C5—H5C109.5C14—C19—C20107.1 (4)
H5A—C5—H5C109.5C21—C20—C25119.1 (5)
H5B—C5—H5C109.5C21—C20—C19133.9 (5)
C7—C6—C3123.6 (5)C25—C20—C19107.0 (4)
C7—C6—H6118.2C22—C21—C20119.7 (5)
C3—C6—H6118.2C22—C21—H21120.1
C6—C7—C8127.3 (5)C20—C21—H21120.1
C6—C7—H7116.4C21—C22—C23121.0 (5)
C8—C7—H7116.4C21—C22—H22119.5
C9—C8—C13118.1 (4)C23—C22—H22119.5
C9—C8—C7119.0 (4)C24—C23—C22120.8 (5)
C13—C8—C7122.9 (4)C24—C23—H23119.6
C8—C9—C10121.0 (4)C22—C23—H23119.6
C8—C9—H9119.5C25—C24—C23118.2 (5)
C10—C9—H9119.5C25—C24—H24120.9
C9—C10—C11120.5 (4)C23—C24—H24120.9
C9—C10—H10119.8C24—C25—N4130.0 (4)
C11—C10—H10119.8C24—C25—C20121.2 (4)
C12—C11—C10119.0 (4)N4—C25—C20108.7 (4)
C12—C11—N4120.3 (4)
C2—N1—C1—N2−0.5 (9)C25—N4—C14—C19−0.3 (5)
C2—N1—C1—C4−178.7 (5)C11—N4—C14—C19−177.8 (4)
C3—N2—C1—N10.1 (8)N4—C14—C15—C16178.7 (5)
C3—N2—C1—C4178.3 (5)C19—C14—C15—C161.4 (8)
C3—N3—C2—N1−0.4 (8)C14—C15—C16—C170.0 (8)
C3—N3—C2—C5179.4 (5)C15—C16—C17—C18−0.7 (9)
C1—N1—C2—N30.7 (9)C16—C17—C18—C190.1 (8)
C1—N1—C2—C5−179.2 (5)C17—C18—C19—C141.2 (7)
C2—N3—C3—N20.0 (8)C17—C18—C19—C20−179.4 (5)
C2—N3—C3—C6179.0 (4)C15—C14—C19—C18−1.9 (7)
C1—N2—C3—N30.1 (8)N4—C14—C19—C18−179.8 (4)
C1—N2—C3—C6−178.9 (5)C15—C14—C19—C20178.5 (5)
N3—C3—C6—C7−179.4 (5)N4—C14—C19—C200.6 (5)
N2—C3—C6—C7−0.3 (8)C18—C19—C20—C21−0.2 (10)
C3—C6—C7—C8179.2 (5)C14—C19—C20—C21179.3 (5)
C6—C7—C8—C9−173.2 (5)C18—C19—C20—C25179.7 (5)
C6—C7—C8—C137.1 (8)C14—C19—C20—C25−0.8 (5)
C13—C8—C9—C100.7 (8)C25—C20—C21—C220.7 (8)
C7—C8—C9—C10−179.1 (5)C19—C20—C21—C22−179.3 (6)
C8—C9—C10—C11−1.3 (8)C20—C21—C22—C23−0.2 (9)
C9—C10—C11—C120.7 (8)C21—C22—C23—C240.1 (9)
C9—C10—C11—N4−178.3 (5)C22—C23—C24—C25−0.5 (8)
C25—N4—C11—C1249.7 (7)C23—C24—C25—N4178.9 (5)
C14—N4—C11—C12−133.2 (5)C23—C24—C25—C201.1 (8)
C25—N4—C11—C10−131.3 (5)C14—N4—C25—C24−178.2 (5)
C14—N4—C11—C1045.8 (7)C11—N4—C25—C24−0.7 (8)
C10—C11—C12—C130.5 (8)C14—N4—C25—C20−0.2 (5)
N4—C11—C12—C13179.5 (5)C11—N4—C25—C20177.3 (4)
C11—C12—C13—C8−1.0 (8)C21—C20—C25—C24−1.2 (7)
C9—C8—C13—C120.4 (8)C19—C20—C25—C24178.8 (4)
C7—C8—C13—C12−179.8 (5)C21—C20—C25—N4−179.4 (5)
C25—N4—C14—C15−177.9 (5)C19—C20—C25—N40.6 (5)
C11—N4—C14—C154.6 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5017).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Cui, Y. Z., Fang, Q., Huang, Z. L., Xue, G., Xu, G. B. & Yu, W. T. (2004). J. Mater. Chem.14, 2443–2449.
  • Cui, Y. Z., Fang, Q., Lei, H., Xue, G. & Yu, W. T. (2003). Chem. Phys. Lett.377, 507–511.
  • Kannan, R., He, G. S., Lin, T. C., Prasad, P. N., Vaia, R. A. & Tan, L. S. (2004). Chem. Mater.16, 185–194.
  • Maury, O. & Bozec, H. L. (2005). Acc. Chem. Res.38, 691–704. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Zhong, H. L., Xu, E. J., Zeng, D. L., Du, J. P., Sun, J., Ren, S. J., Jiang, B. & Fang, Q. (2008). Org. Lett.10, 709–712. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography