PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2161.
Published online 2009 August 15. doi:  10.1107/S160053680903164X
PMCID: PMC2970029

2-(2-Amino-5-methylthia­zol-4-yl)phenol

Abstract

In the title compound, C10H10N2OS, the benzene ring is nearly co-planar with the thia­zole ring, making a dihedral angle of 2.1 (2)°. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds. An intra­molecular O—H(...)N hydrogen bond is also present.

Related literature

For background to 2-amino-4-aryl­thia­zoles and their wide-ranging anti­fungal activity, see: Hu et al. (2008 [triangle]); Kazzouli et al. (2002 [triangle]); Holla et al. (2003 [triangle]). For a related structure, see: He et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2161-scheme1.jpg

Experimental

Crystal data

  • C10H10N2OS
  • M r = 206.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2161-efi1.jpg
  • a = 12.9391 (5) Å
  • b = 10.3967 (4) Å
  • c = 14.2938 (6) Å
  • V = 1922.86 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 173 K
  • 0.48 × 0.42 × 0.39 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.869, T max = 0.891
  • 11037 measured reflections
  • 1881 independent reflections
  • 1706 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.150
  • S = 0.98
  • 1881 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 1.20 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903164X/xu2563sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903164X/xu2563Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was performed with the support of the start-up fund for doctoral research of Guangdong Pharmaceutical University.

supplementary crystallographic information

Comment

Compounds containing thiazole are found to exhibit a wide spectrum of biological activities and many of them are well known antiviral, antifungal agents and some are used as pesticides (Kazzouli et al., 2002; Holla et al., 2003; Hu et al., 2008). The structure of 2-amino-4-arylthiazoles was reported before (He et al., 2006). Herein we report the synthesis and crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1. The molecules are linked by intermolecular hydrogen bonds (N–H···O) and intramolecular hydrogen bonds (O–H···N) (Table 1). The dihedral angle between the planes of thiazole and the benzene ring is 2.1 (2)°.

Experimental

A solution with 0.005 mol of thiourea and 0.005 mol of 2-bromo-1-(2-hydroxyphenyl)-1-propanone in 50 ml of ethanol was refluxed for 10 h. After finishing the reaction, added 10 ml ammonia and continues to stir the solution 2 h. Then the solution was cooled and the precipitate formed was filtered out, dried, giving white crystals of title compound, yield 60.3%. m.p. 388–389 K. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The hydroxy H atom was positioned geometrically (O–H = 0.84 Å) and refined as riding [Uiso(H) = 1.5 Ueq(O)]. Methyl H atoms were positioned geometrically (C–H = 0.98 Å) and torsion angles refined to fit the electron density [Uiso(H) = 1.5 Ueq(C)]. Other H atoms were placed in calculated positions (N–H 0.88 Å and aromatic C–H = 0.95 Å) and refined as riding [Uiso(H) = 1.2 Ueq(C, N)]. The highest peak in the final difference Fourier map is 0.79 Å apart from H8 atom.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoid (arbitrary spheres for H atoms).

Crystal data

C10H10N2OSF(000) = 864
Mr = 206.27Dx = 1.425 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7684 reflections
a = 12.9391 (5) Åθ = 2.4–27.0°
b = 10.3967 (4) ŵ = 0.30 mm1
c = 14.2938 (6) ÅT = 173 K
V = 1922.86 (13) Å3Block, yellow
Z = 80.48 × 0.42 × 0.39 mm

Data collection

Bruker SMART 1000 CCD diffractometer1881 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −15→14
Tmin = 0.869, Tmax = 0.891k = −12→12
11037 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0885P)2 + 3.3976P] where P = (Fo2 + 2Fc2)/3
1881 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Experimental. 1H NMR (CDCl3, 400 MHz): 2.48 (s, 3H, CH3), 4.97 (br, 2H, NH2), 6.86–7.42(m, 4H, phenyl-H).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.29069 (5)0.23322 (6)0.58881 (4)0.0269 (2)
C10.2598 (2)0.3782 (2)0.64120 (16)0.0242 (5)
C20.43091 (18)0.4000 (2)0.61774 (16)0.0232 (5)
C30.4199 (2)0.2792 (2)0.58181 (17)0.0266 (6)
C40.52468 (18)0.4802 (2)0.62670 (16)0.0241 (5)
C50.52103 (19)0.6026 (2)0.66966 (17)0.0263 (5)
C60.6103 (2)0.6770 (3)0.67875 (18)0.0315 (6)
H60.60660.75890.70810.038*
C70.7037 (2)0.6329 (3)0.64567 (19)0.0344 (6)
H70.76420.68400.65260.041*
C80.7095 (2)0.5136 (3)0.6021 (2)0.0369 (7)
H80.77380.48290.57900.044*
C90.6212 (2)0.4398 (3)0.59266 (18)0.0314 (6)
H90.62610.35900.56200.038*
C100.4945 (2)0.1822 (3)0.5439 (2)0.0413 (7)
H10A0.52520.21490.48590.062*
H10B0.45790.10160.53090.062*
H10C0.54910.16650.58990.062*
N10.33898 (16)0.45419 (19)0.65168 (14)0.0243 (5)
N20.16111 (17)0.4091 (2)0.66472 (16)0.0316 (5)
H2A0.14730.48500.68890.038*
H2B0.11100.35310.65580.038*
O10.43180 (14)0.65465 (18)0.70442 (15)0.0359 (5)
H10.38330.60150.69850.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0270 (4)0.0238 (4)0.0301 (4)−0.0019 (2)−0.0005 (2)−0.0051 (2)
C10.0263 (12)0.0229 (12)0.0234 (11)−0.0001 (9)−0.0006 (9)−0.0005 (9)
C20.0234 (12)0.0238 (12)0.0225 (11)0.0026 (9)0.0002 (9)0.0014 (9)
C30.0258 (12)0.0266 (13)0.0274 (12)0.0006 (10)0.0004 (9)−0.0009 (9)
C40.0236 (12)0.0264 (12)0.0223 (11)0.0008 (9)−0.0014 (9)0.0036 (9)
C50.0243 (12)0.0270 (12)0.0277 (12)0.0022 (10)−0.0017 (9)0.0022 (10)
C60.0313 (14)0.0312 (13)0.0321 (13)−0.0040 (11)−0.0043 (11)0.0010 (10)
C70.0285 (14)0.0421 (16)0.0328 (13)−0.0106 (11)−0.0026 (10)0.0045 (12)
C80.0250 (14)0.0473 (17)0.0385 (14)−0.0006 (12)0.0061 (11)0.0019 (13)
C90.0274 (13)0.0335 (14)0.0333 (13)0.0010 (11)0.0047 (10)−0.0017 (11)
C100.0338 (15)0.0321 (15)0.0581 (18)0.0044 (12)0.0047 (13)−0.0131 (13)
N10.0221 (10)0.0226 (10)0.0282 (10)0.0003 (8)0.0016 (8)−0.0015 (8)
N20.0228 (11)0.0298 (11)0.0422 (12)−0.0017 (9)0.0024 (9)−0.0075 (10)
O10.0242 (9)0.0275 (10)0.0561 (12)0.0006 (7)−0.0007 (8)−0.0113 (9)

Geometric parameters (Å, °)

S1—C11.730 (2)C6—H60.9500
S1—C31.742 (3)C7—C81.390 (4)
C1—N11.302 (3)C7—H70.9500
C1—N21.359 (3)C8—C91.382 (4)
C2—C31.364 (4)C8—H80.9500
C2—N11.403 (3)C9—H90.9500
C2—C41.477 (3)C10—H10A0.9800
C3—C101.498 (4)C10—H10B0.9800
C4—C91.405 (3)C10—H10C0.9800
C4—C51.414 (4)N2—H2A0.8800
C5—O11.368 (3)N2—H2B0.8800
C5—C61.397 (4)O1—H10.8400
C6—C71.376 (4)
C1—S1—C390.41 (12)C6—C7—H7120.1
N1—C1—N2124.6 (2)C8—C7—H7120.1
N1—C1—S1113.39 (19)C7—C8—C9119.6 (3)
N2—C1—S1121.98 (19)C7—C8—H8120.2
C3—C2—N1114.3 (2)C9—C8—H8120.2
C3—C2—C4129.6 (2)C8—C9—C4122.4 (3)
N1—C2—C4116.1 (2)C8—C9—H9118.8
C2—C3—C10133.6 (2)C4—C9—H9118.8
C2—C3—S1109.35 (19)C3—C10—H10A109.5
C10—C3—S1117.0 (2)C3—C10—H10B109.5
C9—C4—C5116.7 (2)H10A—C10—H10B109.5
C9—C4—C2122.1 (2)C3—C10—H10C109.5
C5—C4—C2121.2 (2)H10A—C10—H10C109.5
O1—C5—C6116.4 (2)H10B—C10—H10C109.5
O1—C5—C4122.8 (2)C1—N1—C2112.6 (2)
C6—C5—C4120.8 (2)C1—N2—H2A120.0
C7—C6—C5120.6 (3)C1—N2—H2B120.0
C7—C6—H6119.7H2A—N2—H2B120.0
C5—C6—H6119.7C5—O1—H1109.5
C6—C7—C8119.9 (2)
C3—S1—C1—N10.48 (19)C9—C4—C5—C6−1.2 (3)
C3—S1—C1—N2177.9 (2)C2—C4—C5—C6179.3 (2)
N1—C2—C3—C10−175.7 (3)O1—C5—C6—C7−179.8 (2)
C4—C2—C3—C103.6 (5)C4—C5—C6—C70.3 (4)
N1—C2—C3—S11.0 (3)C5—C6—C7—C80.5 (4)
C4—C2—C3—S1−179.6 (2)C6—C7—C8—C9−0.2 (4)
C1—S1—C3—C2−0.85 (19)C7—C8—C9—C4−0.8 (4)
C1—S1—C3—C10176.5 (2)C5—C4—C9—C81.5 (4)
C3—C2—C4—C93.0 (4)C2—C4—C9—C8−179.0 (2)
N1—C2—C4—C9−177.7 (2)N2—C1—N1—C2−177.3 (2)
C3—C2—C4—C5−177.6 (2)S1—C1—N1—C20.0 (3)
N1—C2—C4—C51.8 (3)C3—C2—N1—C1−0.7 (3)
C9—C4—C5—O1178.9 (2)C4—C2—N1—C1179.9 (2)
C2—C4—C5—O1−0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.772.521 (3)148
N2—H2B···O1i0.882.252.961 (3)138

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2563).

References

  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637–o5638.
  • Holla, B. S., Malini, K. V., Rao, B. S. N., Sarojini, B. K. & Kumari, N. S. (2003). Eur. J. Med. Chem.38, 313–318. [PubMed]
  • Hu, A.-X., Cao, G., Ma, Y.-Q., Zhang, J.-Y. & Ou, X.-M. (2008). Chin. J. Struct. Chem.27, 1235–1239.
  • Kazzouli, S. E., Berteina-Raboin, S., Mouaddibb, A. & Guillaumeta, G. (2002). Tetrahedron Lett., 43, 3193–3196.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography