PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2251.
Published online 2009 August 26. doi:  10.1107/S1600536809033285
PMCID: PMC2970028

N,N′-Bis[(E)-2-thienylmethyl­ene]-4,4′-oxydianiline

Abstract

In the title mol­ecule, C22H16N2OS2, which demonstrates non-crystallographic C 2 pseudosymmetry [C—O—C angle = 121.0 (3)°], the two benzene rings make a dihedral angle of 62.09 (14)°. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For general background, see: Nakajima et al. (1998 [triangle]); Opstal & Verpoort (2003 [triangle]); Chakraborty & Patel (1996 [triangle]). For a related structure, see Hu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2251-scheme1.jpg

Experimental

Crystal data

  • C22H16N2OS2
  • M r = 388.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2251-efi1.jpg
  • a = 6.0897 (7) Å
  • b = 41.478 (3) Å
  • c = 7.5300 (12) Å
  • β = 90.130 (1)°
  • V = 1902.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 298 K
  • 0.40 × 0.37 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.891, T max = 0.985
  • 8674 measured reflections
  • 3319 independent reflections
  • 2079 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.090
  • wR(F 2) = 0.218
  • S = 1.08
  • 3319 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033285/cv2595sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033285/cv2595Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of Liaocheng University (grant No. X20090101).

supplementary crystallographic information

Comment

In the recent years, there is a considerable interest in the chemistry of Schiff bases (Nakajima et al., 1998). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal centred electronic factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts (Opstal & Verpoort, 2003). Schiff base complexes with metals exhibit strong anticancer activity (Chakraborty & Patel, 1996). Here, we report the synthesis and crystal structure of the title compound (I)- new flexible Schiff-base ligand.

The molecule of (I) is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Hu et al., 2008). The C13=N1 and C18=N2 bond lengths of 1.244 (6) and 1.253 (6) Å, respectively, are usual for C=N double bond. Each half of the molecule displays a trans configuration across the C=N double bond. The dihedral angles between the benzene rings C1-C6 and C7-C12 is 62.09 (14) °.

In the crystal structure, there are no significantly short intermolecular contacts.

Experimental

4-(4'-Aminophenoxy)benzenamine (10 mmol), thiophene-2-carbaldehyde (20 mmol) and 20 ml of ethanol were mixed in 50 ml flask. After stirring for 3h at 303 K, the resulting mixture was recrystallized from ethanol, affording the title compound as orange crystalline solid.

Refinement

All H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C22H16N2OS2F(000) = 808
Mr = 388.49Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.0897 (7) ÅCell parameters from 2059 reflections
b = 41.478 (3) Åθ = 3.9–25.0°
c = 7.5300 (12) ŵ = 0.29 mm1
β = 90.130 (1)°T = 298 K
V = 1902.0 (4) Å3Block, red
Z = 40.40 × 0.37 × 0.05 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3319 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
graphiteRint = 0.073
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→7
Tmin = 0.891, Tmax = 0.985k = −49→38
8674 measured reflectionsl = −8→7

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0631P)2 + 3.3823P] where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.4955 (3)0.05770 (4)0.6056 (3)0.0906 (6)
S20.4773 (3)0.44248 (5)0.5080 (3)0.0998 (7)
N10.6149 (7)0.12778 (10)0.5599 (6)0.0552 (11)
N20.6082 (7)0.37230 (10)0.5480 (6)0.0529 (11)
O10.9917 (5)0.25041 (8)0.5517 (5)0.0489 (8)
C10.8811 (7)0.22122 (11)0.5554 (6)0.0409 (11)
C20.9821 (7)0.19597 (11)0.6410 (6)0.0443 (12)
H21.11370.19940.70100.053*
C30.8919 (7)0.16597 (11)0.6389 (6)0.0450 (12)
H30.96370.14920.69690.054*
C40.6937 (8)0.15984 (10)0.5516 (6)0.0419 (11)
C50.5935 (8)0.18563 (11)0.4622 (6)0.0470 (12)
H50.46270.18220.40120.056*
C60.6854 (8)0.21602 (11)0.4629 (6)0.0451 (12)
H60.61770.23290.40240.054*
C70.8781 (7)0.27942 (10)0.5519 (6)0.0397 (11)
C80.9794 (8)0.30454 (12)0.4627 (6)0.0457 (12)
H81.10850.30090.40010.055*
C90.8885 (8)0.33485 (12)0.4669 (6)0.0475 (12)
H90.95950.35190.41090.057*
C100.6885 (7)0.34028 (11)0.5557 (6)0.0412 (11)
C110.5918 (8)0.31457 (11)0.6446 (6)0.0473 (12)
H110.46150.31780.70620.057*
C120.6863 (7)0.28442 (11)0.6428 (6)0.0440 (11)
H120.62010.26750.70320.053*
C130.4187 (9)0.12173 (12)0.5275 (7)0.0558 (14)
H130.32450.13840.49600.067*
C140.3329 (9)0.08851 (12)0.5382 (7)0.0556 (14)
C150.1330 (9)0.07893 (13)0.4965 (8)0.0655 (16)
H150.02240.09270.45700.079*
C160.1061 (11)0.04474 (15)0.5191 (10)0.085 (2)
H16−0.02400.03380.49560.102*
C170.2895 (12)0.03046 (15)0.5779 (10)0.084 (2)
H170.30250.00850.60060.101*
C180.4106 (9)0.37824 (12)0.5808 (7)0.0555 (13)
H180.31780.36130.61010.067*
C190.3211 (9)0.41082 (12)0.5748 (7)0.0553 (13)
C200.1186 (9)0.42042 (13)0.6180 (8)0.0623 (15)
H200.00870.40650.65580.075*
C210.0893 (11)0.45432 (15)0.6002 (9)0.081 (2)
H21−0.04080.46500.62700.097*
C220.2677 (13)0.46897 (15)0.5412 (12)0.100 (3)
H220.27750.49100.52030.120*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0697 (11)0.0664 (11)0.1356 (17)0.0015 (9)−0.0133 (10)0.0213 (11)
S20.0662 (11)0.0620 (11)0.171 (2)−0.0033 (9)0.0046 (11)0.0270 (11)
N10.049 (3)0.052 (3)0.064 (3)0.002 (2)−0.002 (2)0.004 (2)
N20.050 (3)0.045 (3)0.064 (3)−0.001 (2)0.001 (2)0.001 (2)
O10.0408 (17)0.0418 (18)0.064 (2)−0.0024 (15)0.0016 (15)−0.0023 (15)
C10.041 (3)0.040 (3)0.042 (3)0.000 (2)0.003 (2)−0.001 (2)
C20.038 (3)0.047 (3)0.047 (3)0.005 (2)−0.004 (2)−0.001 (2)
C30.044 (3)0.045 (3)0.046 (3)0.008 (2)−0.006 (2)0.007 (2)
C40.049 (3)0.034 (3)0.043 (3)0.000 (2)0.004 (2)0.002 (2)
C50.042 (3)0.049 (3)0.050 (3)−0.003 (2)−0.012 (2)0.000 (2)
C60.049 (3)0.041 (3)0.045 (3)0.005 (2)−0.008 (2)0.004 (2)
C70.045 (3)0.037 (3)0.038 (3)0.003 (2)−0.005 (2)−0.003 (2)
C80.038 (3)0.052 (3)0.047 (3)−0.008 (2)0.002 (2)−0.005 (2)
C90.048 (3)0.047 (3)0.048 (3)−0.011 (2)−0.001 (2)0.006 (2)
C100.041 (3)0.040 (3)0.043 (3)−0.001 (2)−0.005 (2)−0.002 (2)
C110.045 (3)0.046 (3)0.050 (3)0.001 (2)0.010 (2)−0.001 (2)
C120.044 (3)0.041 (3)0.046 (3)−0.004 (2)0.008 (2)0.001 (2)
C130.061 (4)0.047 (3)0.059 (3)0.010 (3)−0.001 (3)−0.002 (2)
C140.062 (3)0.047 (3)0.058 (3)0.001 (3)0.006 (3)0.000 (2)
C150.061 (4)0.038 (3)0.097 (5)0.001 (3)−0.022 (3)0.002 (3)
C160.062 (4)0.063 (4)0.131 (7)−0.015 (3)−0.002 (4)−0.009 (4)
C170.092 (5)0.041 (4)0.118 (6)−0.009 (3)0.022 (4)0.013 (3)
C180.053 (3)0.051 (3)0.062 (3)−0.007 (3)−0.003 (3)0.001 (3)
C190.055 (3)0.050 (3)0.061 (3)−0.002 (3)−0.006 (3)0.001 (3)
C200.057 (3)0.051 (3)0.079 (4)0.000 (3)0.012 (3)−0.005 (3)
C210.072 (4)0.066 (4)0.103 (5)0.020 (4)−0.018 (4)−0.009 (4)
C220.089 (5)0.041 (4)0.170 (8)−0.005 (4)−0.021 (5)0.006 (4)

Geometric parameters (Å, °)

S1—C141.694 (5)C8—H80.9300
S1—C171.701 (7)C9—C101.409 (7)
S2—C191.698 (5)C9—H90.9300
S2—C221.703 (8)C10—C111.390 (6)
N1—C131.244 (6)C11—C121.377 (6)
N1—C41.415 (6)C11—H110.9300
N2—C181.253 (6)C12—H120.9300
N2—C101.416 (6)C13—C141.476 (7)
O1—C11.386 (5)C13—H130.9300
O1—C71.388 (5)C14—C151.318 (7)
C1—C21.374 (6)C15—C161.438 (8)
C1—C61.396 (6)C15—H150.9300
C2—C31.361 (6)C16—C171.338 (9)
C2—H20.9300C16—H160.9300
C3—C41.396 (6)C17—H170.9300
C3—H30.9300C18—C191.458 (7)
C4—C51.403 (6)C18—H180.9300
C5—C61.379 (6)C19—C201.337 (7)
C5—H50.9300C20—C211.423 (8)
C6—H60.9300C20—H200.9300
C7—C121.371 (6)C21—C221.323 (9)
C7—C81.385 (6)C21—H210.9300
C8—C91.374 (6)C22—H220.9300
C14—S1—C1791.9 (3)C12—C11—H11119.5
C19—S2—C2292.0 (3)C10—C11—H11119.5
C13—N1—C4120.4 (4)C7—C12—C11119.9 (4)
C18—N2—C10120.5 (4)C7—C12—H12120.0
C1—O1—C7121.0 (3)C11—C12—H12120.0
C2—C1—O1117.3 (4)N1—C13—C14121.2 (5)
C2—C1—C6119.8 (4)N1—C13—H13119.4
O1—C1—C6122.6 (4)C14—C13—H13119.4
C3—C2—C1120.8 (4)C15—C14—C13126.5 (5)
C3—C2—H2119.6C15—C14—S1112.5 (4)
C1—C2—H2119.6C13—C14—S1120.9 (4)
C2—C3—C4121.4 (4)C14—C15—C16112.0 (5)
C2—C3—H3119.3C14—C15—H15124.0
C4—C3—H3119.3C16—C15—H15124.0
C3—C4—C5117.5 (4)C17—C16—C15112.4 (6)
C3—C4—N1116.3 (4)C17—C16—H16123.8
C5—C4—N1126.2 (4)C15—C16—H16123.8
C6—C5—C4121.3 (4)C16—C17—S1111.2 (5)
C6—C5—H5119.4C16—C17—H17124.4
C4—C5—H5119.4S1—C17—H17124.4
C5—C6—C1119.3 (4)N2—C18—C19122.3 (5)
C5—C6—H6120.4N2—C18—H18118.8
C1—C6—H6120.4C19—C18—H18118.8
C12—C7—C8120.6 (4)C20—C19—C18127.9 (5)
C12—C7—O1123.8 (4)C20—C19—S2111.1 (4)
C8—C7—O1115.4 (4)C18—C19—S2121.1 (4)
C9—C8—C7119.8 (4)C19—C20—C21112.8 (5)
C9—C8—H8120.1C19—C20—H20123.6
C7—C8—H8120.1C21—C20—H20123.6
C8—C9—C10120.4 (4)C22—C21—C20112.5 (6)
C8—C9—H9119.8C22—C21—H21123.8
C10—C9—H9119.8C20—C21—H21123.8
C11—C10—C9118.2 (4)C21—C22—S2111.7 (5)
C11—C10—N2126.3 (4)C21—C22—H22124.2
C9—C10—N2115.4 (4)S2—C22—H22124.2
C12—C11—C10121.0 (4)
C7—O1—C1—C2−148.1 (4)N2—C10—C11—C12−179.8 (4)
C7—O1—C1—C638.0 (7)C8—C7—C12—C110.5 (7)
O1—C1—C2—C3−175.0 (4)O1—C7—C12—C11175.9 (4)
C6—C1—C2—C3−1.0 (7)C10—C11—C12—C7−0.2 (7)
C1—C2—C3—C4−0.5 (7)C4—N1—C13—C14−179.1 (4)
C2—C3—C4—C51.5 (7)N1—C13—C14—C15−175.5 (6)
C2—C3—C4—N1−179.4 (4)N1—C13—C14—S13.3 (7)
C13—N1—C4—C3161.5 (5)C17—S1—C14—C15−0.1 (5)
C13—N1—C4—C5−19.6 (8)C17—S1—C14—C13−179.0 (5)
C3—C4—C5—C6−1.1 (7)C13—C14—C15—C16178.8 (6)
N1—C4—C5—C6−180.0 (5)S1—C14—C15—C16−0.1 (7)
C4—C5—C6—C1−0.4 (7)C14—C15—C16—C170.2 (9)
C2—C1—C6—C51.4 (7)C15—C16—C17—S1−0.3 (8)
O1—C1—C6—C5175.2 (4)C14—S1—C17—C160.2 (6)
C1—O1—C7—C1235.5 (6)C10—N2—C18—C19179.9 (5)
C1—O1—C7—C8−148.9 (4)N2—C18—C19—C20−175.2 (6)
C12—C7—C8—C90.8 (7)N2—C18—C19—S24.4 (8)
O1—C7—C8—C9−175.0 (4)C22—S2—C19—C200.6 (5)
C7—C8—C9—C10−2.5 (7)C22—S2—C19—C18−179.1 (5)
C8—C9—C10—C112.8 (7)C18—C19—C20—C21178.5 (5)
C8—C9—C10—N2−178.7 (4)S2—C19—C20—C21−1.1 (7)
C18—N2—C10—C11−19.9 (7)C19—C20—C21—C221.2 (9)
C18—N2—C10—C9161.6 (5)C20—C21—C22—S2−0.8 (9)
C9—C10—C11—C12−1.4 (7)C19—S2—C22—C210.1 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2595).

References

  • Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc.73, 191–195.
  • Hu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, o115. [PMC free article] [PubMed]
  • Nakajima, K., Ando, Y., Mano, H. & Kojima, M. (1998). Inorg. Chim. Acta, 274, 184–191.
  • Opstal, T. & Verpoort, F. (2003). Angew. Chem. Int. Ed.42, 2876–2879. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography