PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1057.
Published online 2009 August 12. doi:  10.1107/S1600536809030724
PMCID: PMC2970012

trans-Dioxidotetra­pyridine­rhenium(V) triiodide

Abstract

In the title salt, [ReO2(C5H5N)4]I3, the cation and anion are both located on centres of symmetry. The ReV atom adopts a trans-ReO2N4 octa­hedral coordination and short intra­molecular C—H(...)O contacts occur within the cation. In the crystal, the cations form layers perpendicular to [100] and a weak C—H(...)O inter­action links the cations.

Related literature

For related structures containing the same cation, see: Calvo et al. (1971 [triangle]); Lock & Turner (1978 [triangle]); Luck & O’Neill (2001 [triangle]). For further synthetic details, see: Johnson et al. (1967 [triangle]). For background to aromatic π–π stacking, see: Janiak (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1057-scheme1.jpg

Experimental

Crystal data

  • [ReO2(C5H5N)4]I3
  • M r = 915.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1057-efi1.jpg
  • a = 7.993 (3) Å
  • b = 9.100 (3) Å
  • c = 9.356 (3) Å
  • α = 92.45 (4)°
  • β = 102.41 (4)°
  • γ = 104.10 (4)°
  • V = 641.3 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 8.37 mm−1
  • T = 100 K
  • 0.10 × 0.10 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur PX KM-4-CCD diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.411, T max = 0.656
  • 11244 measured reflections
  • 4298 independent reflections
  • 3593 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.031
  • S = 1.04
  • 4298 reflections
  • 139 parameters
  • H-atom parameters constrained
  • Δρmax = 1.40 e Å−3
  • Δρmin = −1.08 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030724/hb5027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030724/hb5027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The crystal structure of a salt containing [ReO2(C5H5N)4]+ cation was first investigated by Calvo et al., (1971). The authors obtained dioxidotetra(pyridine)rhenium(V) chloride dihydrate in the reaction between trichloridooxidobis(triphenylphosphine)rhenium(V) (Johnson et al., 1967) and hot pyridine used in excess. The crystal structure of [ReO2(C5H5N)4]Cl.2H2O was redetermined by Lock & Turner (1978). The cation [ReO2(C5H5N)4]+ was also described by Luck & O'Neill (2001) as [ReO2(C5H5N)4[OH].1.75H2O salt. This salt was prepared by dissolving ReCl(H2)(PMePh2)4 in the mixture of benzene, pyridine, water and hexane.

The crystal structure of trans-dioxidotetra(pyridine)rhenium(V) triiodide comprises of [ReO2(C5H5N)4]+ cations and I3- anions (Fig. 1). Both ions are located on centres of symmetry. The cation is a distorted octahedron, with two oxido (terminal) ligands in trans arrangement and four pyridine ligands in equatorial positions.

The average Re—O and Re—N bond distances equal 1.765 (2), 2.143 (2) Å, respectively, and are in good agreement with values reported by Calvo et al., (1971), Lock & Turner (1978) and Luck & O'Neill (2001). Moreover, comparing the values of O—Re—O angle comparatively small differences between previous and present results can be observed. In the crystal structure reported here this angle equals 180° and reported for other salts is 171 (1)° (Calvo et al., 1971) and 174.5 (4)° (Lock & Turner, 1978). Similarly, the value of N—Re—Ntrans angles in [ReO2(C5H5N)4]I3 equals 180° and the analogous complex cations that have been determined previously have near linear arrangement of the N—Re—Ntrans moiety. These angles are 176 (2) and 170 (1)° (Calvo et al., 1971), and 173.9 (4) and 175.2 (6)° (Lock & Turner, 1978). The comparatively weak intramolecular hydrogen bonds such as C—H···O can be observed (Fig. 2, Table 2).

The molecular packing in the crystal structure can be described as layers perpendicular to [100] direction which consist of the complex cations (Fig. 3). The I3- anions are located between the layers of [ReO2(C5H5N)4]+ cations. In the crystal packing there are intermolecular stacking interactions between pyridine rings with centroid-centroid distance of 3.831 (2) Å and a slip angle 25°. These values are comparable with the corresponding values reported for transition-metal pyridine fragments (Janiak, 2000). (The ring centroid contacts range between 3.4 and 3.8 Å and the angle averages 27°).

Experimental

Rhenium(III) iodide 0.2982 g (0.1753 mmol) was refluxed in dry pyridine (5 ml) (62 mmol) for 3 h at 423 K. The mixture was allowed to evaporate in air at high temperature to give a greenish brown precipitate. The complex was recrystallized from methanol to yield orange blocks of (I).

Refinement

All hydrogen atoms were placed in calculated positions and refined using riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak and the deepest hole in the final difference map were 1.07 Å from N1 and 0.78 Å from Re, respectively.

Figures

Fig. 1.
The molecular structure of (I) showing ellipsoids drawn at the 30% probability level. The unlabelled atoms of the cation are generated by the symmetry operation (1–x, 1–y, 1–z) and the unlabelled I atom by (2–x, 2–y, ...
Fig. 2.
A part of the crystal structure showing formation of C—H···O hydrogen bonding. [symmetry code (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.]
Fig. 3.
A packing diagram of (I) showing layers of cations and anions. Hydrogen atoms are omitted for clarity.

Crystal data

[ReO2(C5H5N)4]I3Z = 1
Mr = 915.30F(000) = 418
Triclinic, P1Dx = 2.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.993 (3) ÅCell parameters from 11676 reflections
b = 9.100 (3) Åθ = 4.5–38.4°
c = 9.356 (3) ŵ = 8.37 mm1
α = 92.45 (4)°T = 100 K
β = 102.41 (4)°Block, orange
γ = 104.10 (4)°0.10 × 0.10 × 0.07 mm
V = 641.3 (4) Å3

Data collection

Oxford Diffraction Xcalibur PX KM-4-CCD diffractometer4298 independent reflections
Radiation source: fine-focus sealed tube3593 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 32.5°, θmin = 4.5°
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)h = −12→11
Tmin = 0.411, Tmax = 0.656k = −9→13
11244 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.031H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.008P)2] where P = (Fo2 + 2Fc2)/3
4298 reflections(Δ/σ)max = 0.003
139 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = −1.08 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Re0.50000.50000.50000.01065 (3)
I10.92874 (2)1.171742 (18)0.747033 (17)0.02194 (4)
I21.00001.00001.00000.01924 (5)
O0.7122 (2)0.62887 (16)0.53698 (16)0.0144 (3)
N10.5561 (2)0.4374 (2)0.71983 (19)0.0132 (4)
C110.4386 (3)0.3225 (2)0.7640 (2)0.0159 (5)
H110.33180.27070.69570.019*
C120.4708 (3)0.2798 (3)0.9045 (3)0.0213 (5)
H120.38730.19880.93150.026*
C130.6234 (3)0.3541 (3)1.0059 (3)0.0225 (6)
H130.64680.32511.10310.027*
C140.7421 (3)0.4718 (3)0.9631 (3)0.0223 (5)
H140.84800.52601.03100.027*
C150.7045 (3)0.5096 (3)0.8203 (2)0.0176 (5)
H150.78720.59030.79180.021*
N20.3956 (2)0.6744 (2)0.58055 (19)0.0126 (4)
C210.2226 (3)0.6460 (3)0.5840 (2)0.0148 (5)
H210.14810.54670.55060.018*
C220.1494 (3)0.7552 (3)0.6340 (2)0.0173 (5)
H220.02680.73120.63370.021*
C230.2564 (3)0.8991 (3)0.6844 (3)0.0196 (5)
H230.20920.97620.71920.024*
C240.4346 (3)0.9288 (3)0.6833 (3)0.0229 (6)
H240.51191.02650.71900.027*
C250.4992 (3)0.8152 (2)0.6299 (3)0.0189 (5)
H250.62110.83740.62790.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re0.00779 (7)0.01136 (7)0.01158 (6)0.00084 (5)0.00184 (5)−0.00043 (5)
I10.01743 (9)0.02567 (9)0.02152 (8)0.00406 (7)0.00338 (7)0.00427 (7)
I20.01598 (12)0.02278 (12)0.01852 (11)0.00268 (10)0.00608 (9)0.00035 (9)
O0.0099 (8)0.0144 (8)0.0166 (8)0.0008 (7)0.0020 (7)−0.0025 (7)
N10.0123 (10)0.0131 (9)0.0145 (9)0.0044 (8)0.0026 (8)−0.0003 (8)
C110.0131 (12)0.0146 (11)0.0182 (11)−0.0002 (10)0.0043 (10)−0.0013 (9)
C120.0291 (15)0.0172 (12)0.0199 (12)0.0060 (12)0.0101 (11)0.0051 (10)
C130.0314 (16)0.0256 (13)0.0152 (11)0.0152 (13)0.0064 (11)0.0039 (10)
C140.0191 (14)0.0289 (14)0.0170 (12)0.0088 (12)−0.0019 (10)−0.0021 (11)
C150.0141 (12)0.0178 (12)0.0181 (11)0.0005 (10)0.0029 (10)−0.0013 (10)
N20.0098 (10)0.0145 (9)0.0123 (9)0.0015 (8)0.0019 (8)0.0004 (8)
C210.0110 (12)0.0148 (11)0.0144 (11)−0.0006 (10)−0.0009 (9)−0.0027 (9)
C220.0112 (12)0.0230 (13)0.0182 (11)0.0046 (11)0.0040 (10)0.0020 (10)
C230.0192 (13)0.0187 (12)0.0236 (12)0.0080 (11)0.0076 (11)−0.0006 (10)
C240.0171 (13)0.0140 (12)0.0361 (14)0.0007 (11)0.0087 (12)−0.0061 (11)
C250.0127 (12)0.0163 (12)0.0268 (13)0.0003 (10)0.0067 (10)−0.0006 (10)

Geometric parameters (Å, °)

Re—Oi1.7649 (18)C13—H130.9500
Re—O1.7649 (18)C14—C151.382 (3)
Re—N1i2.1411 (19)C14—H140.9500
Re—N12.1411 (19)C15—H150.9500
Re—N2i2.1442 (18)N2—C251.344 (3)
Re—N22.1442 (18)N2—C211.351 (3)
I1—I22.9222 (12)C21—C221.382 (3)
I2—I1ii2.9222 (12)C21—H210.9500
N1—C151.346 (3)C22—C231.378 (3)
N1—C111.368 (3)C22—H220.9500
C11—C121.375 (3)C23—C241.386 (3)
C11—H110.9500C23—H230.9500
C12—C131.375 (4)C24—C251.383 (3)
C12—H120.9500C24—H240.9500
C13—C141.383 (3)C25—H250.9500
Oi—Re—O180.0C12—C13—H13120.8
Oi—Re—N1i89.50 (8)C14—C13—H13120.8
O—Re—N1i90.50 (8)C15—C14—C13119.2 (3)
Oi—Re—N190.50 (8)C15—C14—H14120.4
O—Re—N189.50 (8)C13—C14—H14120.4
N1i—Re—N1180.0N1—C15—C14123.0 (2)
Oi—Re—N2i89.76 (7)N1—C15—H15118.5
O—Re—N2i90.24 (7)C14—C15—H15118.5
N1i—Re—N2i88.04 (7)C25—N2—C21117.65 (18)
N1—Re—N2i91.96 (7)C25—N2—Re121.51 (15)
Oi—Re—N290.24 (7)C21—N2—Re120.85 (15)
O—Re—N289.76 (7)N2—C21—C22122.8 (2)
N1i—Re—N291.96 (7)N2—C21—H21118.6
N1—Re—N288.04 (7)C22—C21—H21118.6
N2i—Re—N2180.0C23—C22—C21119.2 (2)
I1—I2—I1ii180.0C23—C22—H22120.4
C15—N1—C11117.36 (19)C21—C22—H22120.4
C15—N1—Re122.15 (15)C22—C23—C24118.4 (2)
C11—N1—Re120.48 (16)C22—C23—H23120.8
N1—C11—C12121.8 (2)C24—C23—H23120.8
N1—C11—H11119.1C25—C24—C23119.5 (2)
C12—C11—H11119.1C25—C24—H24120.2
C13—C12—C11120.3 (2)C23—C24—H24120.2
C13—C12—H12119.9N2—C25—C24122.4 (2)
C11—C12—H12119.9N2—C25—H25118.8
C12—C13—C14118.5 (2)C24—C25—H25118.8
Oi—Re—N1—C15−173.72 (16)Oi—Re—N2—C25−179.56 (17)
O—Re—N1—C156.28 (16)O—Re—N2—C250.44 (17)
N2i—Re—N1—C1596.50 (16)N1i—Re—N2—C25−90.05 (18)
N2—Re—N1—C15−83.50 (16)N1—Re—N2—C2589.95 (18)
Oi—Re—N1—C115.08 (14)Oi—Re—N2—C210.76 (16)
O—Re—N1—C11−174.92 (14)O—Re—N2—C21−179.24 (16)
N2i—Re—N1—C11−84.70 (15)N1i—Re—N2—C2190.27 (17)
N2—Re—N1—C1195.30 (15)N1—Re—N2—C21−89.73 (17)
C15—N1—C11—C12−1.0 (3)C25—N2—C21—C220.8 (3)
Re—N1—C11—C12−179.90 (15)Re—N2—C21—C22−179.55 (16)
N1—C11—C12—C130.7 (3)N2—C21—C22—C23−0.8 (3)
C11—C12—C13—C140.2 (3)C21—C22—C23—C24−0.2 (3)
C12—C13—C14—C15−0.7 (3)C22—C23—C24—C251.1 (4)
C11—N1—C15—C140.5 (3)C21—N2—C25—C240.2 (3)
Re—N1—C15—C14179.34 (16)Re—N2—C25—C24−179.47 (18)
C13—C14—C15—N10.4 (3)C23—C24—C25—N2−1.1 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···O0.952.392.914 (3)114
C25—H25···O0.952.382.906 (3)115
C11—H11···Oi0.952.392.913 (3)115
C21—H21···Oi0.952.372.908 (3)115
C22—H22···Oiii0.952.413.309 (3)157

Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5027).

References

  • Calvo, C., Krishnamachari, N. & Lock, C. J. L. (1971). J . Cryst. Mol. Struct.1, 161–172.
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Johnson, N. P., Lock, C. J. L. & Wilkinson, G. (1967). Inorg. Synth.9, 145–148.
  • Lock, C. J. L. & Turner, G. (1978). Acta Cryst. B34, 923–927.
  • Luck, R. L. & O’Neill, R. S. (2001). Polyhedron, 28, 773–782.
  • Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD Oxford Diffraction Poland, Wrocław, Poland.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography