PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1093.
Published online 2009 August 19. doi:  10.1107/S1600536809031808
PMCID: PMC2970006

Aqua­(2,2′-bipyridine)trifluorido­chromium(III) dihydrate

Abstract

The title compound, [CrF3(C10H8N2)(H2O)]·2H2O, was prepared by the reaction of CrF3 and 2,2′-bipyridine under hydrous conditions. The metal centre is coordinated in a distorted octahedral mode by two N atoms from the organic ligand, three F atoms and one O atom of a water molecule. . The crystal packing is stabilized by O—H(...)O and O—H(...)F hydrogen-bonding contacts, which form a one-dimensional belt extending parallel to (100).

Related literature

For anion structures, see: Kumar et al. (2007 [triangle]); Krishnan et al. (2007 [triangle]); Wu et al. (2007 [triangle]); Dong et al. (2005 [triangle]). For related structures, see: Timco et al. (2005 [triangle]); Larsen et al. (2003 [triangle]); Ochsenbein et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1093-scheme1.jpg

Experimental

Crystal data

  • [CrF3(C10H8N2)(H2O)]·2H2O
  • M r = 319.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1093-efi1.jpg
  • a = 9.0100 (18) Å
  • b = 7.4170 (15) Å
  • c = 20.759 (6) Å
  • β = 112.35 (3)°
  • V = 1283.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.93 mm−1
  • T = 293 K
  • 0.24 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 6478 measured reflections
  • 2257 independent reflections
  • 1916 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.129
  • S = 1.12
  • 2257 reflections
  • 175 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031808/br2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031808/br2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent, the aspect of anion attracts much research interesting in coordination chemistry, like X-, NO3-(Kumar et al., 2007), BF4-, ClO4-(Krishnan et al., 2007), SO32-(Wu et al., 2007). The anion components facilely either coordinate to metal atoms or fill the vacancy of Metal-organic frameworks, and intensively influence the supramolecular framework by hydrogen bonding and electrostatic interactions. But the study of F- anion is still deficient. Because the HF strong acid easily attacks the glass surface and creates SiF62- in the synthetical progress. Here we describe the synthesis and structure of the title Cr compound coordinating with F atom.

The title structure (Fig. 1) was build up of one Cr atom, one 2,2,-bipyridine ligand, three coordination F atoms, one coordination water molecule and two free water molecules. Cr atom is coordinated with two N atoms from 2,2'-bipyridine ligand, three F atoms, one water molecule, presenting a distorted octahedron geometry. The mean Cr—N, Cr—O and Cr—F bond lengths are similar to the reported (Timco et al., 2005, Larsen et al., 2003 & Ochsenbein et al., 2008). The torsion angles of C1—N1—Cr1—O1w, C10—N2—Cr1—F3 are 4.13 (2) and -4.25 (2)°,respectively.

The free water molecules link each other by intermolecular O—H···O hydrogen bonds. And F atoms contact with water molecules via intermolecular O—H···F hydrogen bonds (Table 2). The hydrogen-bonding interactions display as the one-dimensional belt linking the the crystal packing as shown in Fig. 2.

Experimental

All commercially obtained reagent-grade chemicals were used without further purification. The novelty Cr(OH)3 was prepared by mixture CrCl3 6H2O (5.33 g, 20 mmol) with NaOH (2.40 g, 60 mmol) in water solution. After filtered and washed with water, Cr(OH)3 was added to hydrofluoric acid (1.20 g, 60 mmol). The stirring did not stop until the solid dissolved completely. The CrF3 solution was obtained after increasing the pH value from 5 to 7. Ten drops of prepared CrF3 solution were added in the solution of 2,2'-bipyridine (0.48 g, 3 mmol) in water and methanol (3:1 v/v, 40 ml). The resulting solution was refluxed for 2 h and filtered. The brown prism crystals were collected, after cooling and filtering (yield 1.10 g).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H and O-H distances of 0.93–0.96 and 0.85 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The packing view of the molecules of (I) along the crystallographic b direction.

Crystal data

[CrF3(C10H8N2)(H2O)]·2H2OF(000) = 652
Mr = 319.23Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1024 reflections
a = 9.0100 (18) Åθ = 2.4–25.0°
b = 7.4170 (15) ŵ = 0.93 mm1
c = 20.759 (6) ÅT = 293 K
β = 112.35 (3)°Prism, brown
V = 1283.1 (5) Å30.24 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
graphiteθmax = 25.0°, θmin = 2.4°
[var phi] and ω scansh = −10→10
6478 measured reflectionsk = −8→8
2257 independent reflectionsl = −21→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0755P)2 + 0.6391P] where P = (Fo2 + 2Fc2)/3
2257 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr10.15638 (5)0.28271 (7)0.32953 (2)0.0283 (2)
F10.2014 (2)0.0442 (2)0.31271 (9)0.0393 (5)
F20.1128 (2)0.5267 (2)0.34286 (9)0.0436 (5)
F3−0.0083 (2)0.2083 (3)0.35635 (12)0.0521 (6)
N10.3615 (3)0.3591 (4)0.31451 (13)0.0331 (6)
N20.3252 (3)0.2663 (3)0.42877 (13)0.0318 (6)
C10.3689 (4)0.4133 (5)0.25417 (18)0.0453 (8)
H1A0.27410.42990.21570.054*
C20.5145 (5)0.4453 (5)0.2477 (2)0.0540 (10)
H2A0.51680.48290.20540.065*
C30.6529 (5)0.4212 (6)0.3035 (2)0.0579 (10)
H3A0.75130.44060.29970.069*
C40.6469 (4)0.3678 (6)0.3661 (2)0.0533 (10)
H4A0.74100.35130.40500.064*
C50.4997 (4)0.3393 (4)0.37029 (17)0.0358 (7)
C60.4791 (4)0.2890 (4)0.43569 (17)0.0353 (7)
C70.6048 (5)0.2693 (5)0.4996 (2)0.0506 (10)
H7A0.71050.28420.50370.061*
C80.5698 (6)0.2272 (6)0.5569 (2)0.0613 (12)
H8A0.65210.21270.60030.074*
C90.4128 (5)0.2068 (5)0.54970 (18)0.0559 (11)
H9A0.38750.18020.58810.067*
C100.2933 (5)0.2264 (5)0.48461 (18)0.0432 (8)
H10A0.18700.21130.47960.052*
O1W0.0184 (3)0.3056 (3)0.22962 (11)0.0363 (5)
H1W1−0.05360.34430.19230.044*
H2W10.04760.20230.22110.044*
O2W0.0891 (5)0.4622 (5)0.06932 (16)0.0883 (11)
H1W20.02450.47420.09010.106*
H2W20.14870.37190.08710.106*
O3W0.9992 (4)0.1082 (5)0.05359 (17)0.0790 (10)
H2W30.97500.07640.08500.095*
H1W31.03330.00660.04770.095*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.0252 (3)0.0273 (3)0.0288 (3)0.00016 (18)0.0059 (2)0.00170 (18)
F10.0344 (10)0.0296 (10)0.0462 (10)0.0000 (8)0.0068 (8)−0.0007 (8)
F20.0530 (12)0.0329 (10)0.0371 (10)0.0091 (9)0.0084 (9)−0.0017 (8)
F30.0343 (11)0.0647 (15)0.0608 (13)−0.0003 (10)0.0221 (10)0.0137 (10)
N10.0326 (14)0.0322 (14)0.0334 (14)−0.0042 (11)0.0113 (11)0.0016 (11)
N20.0322 (14)0.0298 (14)0.0288 (14)−0.0015 (11)0.0063 (11)0.0028 (10)
C10.048 (2)0.046 (2)0.0418 (19)−0.0066 (17)0.0172 (16)0.0051 (15)
C20.068 (3)0.050 (2)0.059 (2)−0.0085 (19)0.042 (2)0.0035 (18)
C30.043 (2)0.066 (3)0.072 (3)−0.0106 (19)0.030 (2)−0.001 (2)
C40.0329 (18)0.063 (2)0.062 (2)−0.0048 (18)0.0159 (17)0.000 (2)
C50.0315 (16)0.0313 (16)0.0425 (18)−0.0038 (13)0.0116 (14)−0.0021 (14)
C60.0303 (17)0.0296 (17)0.0384 (18)−0.0028 (13)0.0046 (14)−0.0014 (13)
C70.0354 (19)0.052 (2)0.046 (2)−0.0042 (16)−0.0048 (17)0.0025 (16)
C80.062 (3)0.062 (3)0.037 (2)−0.003 (2)−0.0079 (19)0.0087 (17)
C90.072 (3)0.057 (3)0.0294 (19)−0.006 (2)0.0090 (18)0.0086 (16)
C100.045 (2)0.045 (2)0.0367 (19)−0.0040 (16)0.0128 (16)0.0048 (15)
O1W0.0351 (12)0.0310 (11)0.0305 (11)0.0072 (9)−0.0013 (9)−0.0002 (9)
O2W0.124 (3)0.079 (2)0.081 (2)0.037 (2)0.060 (2)0.0043 (18)
O3W0.096 (2)0.083 (2)0.079 (2)−0.002 (2)0.0559 (19)0.0067 (19)

Geometric parameters (Å, °)

Cr1—F31.856 (2)C4—H4A0.9300
Cr1—F11.8769 (18)C5—C61.486 (5)
Cr1—F21.8942 (19)C6—C71.386 (5)
Cr1—O1W1.979 (2)C7—C81.379 (6)
Cr1—N22.047 (3)C7—H7A0.9300
Cr1—N12.067 (3)C8—C91.373 (6)
N1—C11.341 (4)C8—H8A0.9300
N1—C51.348 (4)C9—C101.378 (5)
N2—C101.329 (4)C9—H9A0.9300
N2—C61.350 (4)C10—H10A0.9300
C1—C21.388 (5)O1W—H1W10.8498
C1—H1A0.9300O1W—H2W10.8500
C2—C31.353 (6)O2W—H1W20.8500
C2—H2A0.9300O2W—H2W20.8500
C3—C41.378 (6)O3W—H2W30.7978
C3—H3A0.9300O3W—H1W30.840 (10)
C4—C51.378 (5)
F3—Cr1—F191.69 (9)C2—C3—H3A120.3
F3—Cr1—F290.37 (10)C4—C3—H3A120.3
F1—Cr1—F2177.37 (8)C3—C4—C5119.1 (4)
F3—Cr1—O1W94.86 (10)C3—C4—H4A120.4
F1—Cr1—O1W88.84 (8)C5—C4—H4A120.4
F2—Cr1—O1W89.35 (8)N1—C5—C4121.7 (3)
F3—Cr1—N293.05 (10)N1—C5—C6114.7 (3)
F1—Cr1—N290.05 (9)C4—C5—C6123.6 (3)
F2—Cr1—N291.48 (9)N2—C6—C7121.4 (3)
O1W—Cr1—N2172.04 (10)N2—C6—C5114.5 (3)
F3—Cr1—N1171.69 (10)C7—C6—C5124.1 (3)
F1—Cr1—N187.80 (9)C8—C7—C6118.6 (4)
F2—Cr1—N190.39 (10)C8—C7—H7A120.7
O1W—Cr1—N193.42 (10)C6—C7—H7A120.7
N2—Cr1—N178.66 (11)C9—C8—C7119.7 (4)
C1—N1—C5118.5 (3)C9—C8—H8A120.2
C1—N1—Cr1126.0 (2)C7—C8—H8A120.2
C5—N1—Cr1115.3 (2)C8—C9—C10118.9 (4)
C10—N2—C6119.3 (3)C8—C9—H9A120.5
C10—N2—Cr1124.5 (2)C10—C9—H9A120.5
C6—N2—Cr1116.1 (2)N2—C10—C9122.1 (4)
N1—C1—C2121.7 (3)N2—C10—H10A119.0
N1—C1—H1A119.1C9—C10—H10A119.0
C2—C1—H1A119.1Cr1—O1W—H1W1160.5
C3—C2—C1119.5 (3)Cr1—O1W—H2W191.2
C3—C2—H2A120.3H1W1—O1W—H2W1107.7
C1—C2—H2A120.3H1W2—O2W—H2W2107.7
C2—C3—C4119.4 (4)H2W3—O3W—H1W394.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W1···F10.852.222.699 (3)116
O1W—H2W1···F2i0.852.022.567 (3)121
O1W—H2W1···F2i0.852.022.567 (3)121
O1W—H1W1···F1ii0.851.972.550 (3)125
O2W—H1W2···F3ii0.852.102.664 (4)124
O2W—H2W2···O3Wiii0.852.332.730 (5)110
O3W—H2W3···F2iv0.801.982.767 (3)171
O3W—H2W3···F3iv0.802.963.490 (4)126
O3W—H1W3···O3Wv0.842.182.748125

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2114).

References

  • Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, Y. B., Wang, H. Y., Ma, J. P. & Huang, R. Q. (2005). Cryst. Growth Des.2, 789–800.
  • Krishnan, S. M., Patel, N. M., Knapp, W. R. & Supkowski, R. M. (2007). CrystEngComm, 9, 503–514.
  • Kumar, D. K., Das, A. & Dastidar, P. (2007). CrystEngComm, 9, 548–555.
  • Larsen, F. K., Overgaard, J., Parsons, S., Rentschler, E., Smith, A. A., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed.42, 5978–5981. [PubMed]
  • Ochsenbein, S. T., Tuna, F., Rancan, M., Davies, R. S. G., Muryn, C. A., Waldmann, O., Bircher, R., Sieber, A., Carver, G., Mutka, H., Fernandez-Alonso, F., Podlesnyak, A., Engelhardt, L. P., Timco, G. A., Güdel, H. U. & Winpenny, R. E. P. (2008). Chem. Eur. J.14, 5144–5158. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Timco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649–3651. [PubMed]
  • Wu, L. M., Teng, H. B., Feng, X. C. & Ke, X. B. (2007). Cryst. Growth Des.7, 1337–1342.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography