PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1028.
Published online 2009 August 8. doi:  10.1107/S1600536809029997
PMCID: PMC2970000

4-Cyclo­octa-1,5-diene)diiodidoplatinum(II)

Abstract

The monoclinic title complex, [PtI2(C8H12)], characterized by a twisted cyclo­octa­diene ring, is similar to its Cl and Br ortho­rhom­bic homologues. The observed Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the expected range for PtI2 complexes. The C=C double bonds in the mol­ecule differ significantly [1.373 (10) and 1.403 (10) Å]. As expected for a platinum(II) complex, the PtII atom is in a square-planar environment (ΣPtα= 359.71°).

Related literature

For related structures, see: Thibault et al. (2009 [triangle]); Syed et al. (1984 [triangle]); Wiedermann et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1028-scheme1.jpg

Experimental

Crystal data

  • [PtI2(C8H12)]
  • M r = 557.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1028-efi1.jpg
  • a = 8.3063 (13) Å
  • b = 10.8918 (17) Å
  • c = 12.939 (2) Å
  • β = 106.892 (2)°
  • V = 1120.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 17.98 mm−1
  • T = 296 K
  • 0.58 × 0.56 × 0.42 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: integration (XPREP; Bruker, 2005 [triangle]) T min = 0.023, T max = 0.049
  • 13155 measured reflections
  • 2714 independent reflections
  • 2488 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.073
  • S = 1.09
  • 2714 reflections
  • 105 parameters
  • H-atom parameters constrained
  • Δρmax = 2.65 e Å−3
  • Δρmin = −1.77 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029997/bg2283sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029997/bg2283Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to NSERC (Canada), CFI (Canada), FQRNT (Québec), and Université Laval for financial support. M.-H. Thibault acknowledges FQRNT for a scholarship.

supplementary crystallographic information

Comment

The title compound crystallizes in the P2(1)/n space group (Figure 1). Comparison with its dichloro- and dibromo- derivatives shows an important difference as the latter both crystallize in a P2(1)2(1)2(1) space group.

The general aspect of the diiodo complex is similar to the PtCl2 (Syed et al. 1984) and PtBr2 (Wiedermann et al. 2005) complexes with a twisted cyclooctadiene ring. Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the range expected for PtI2 complexes. The C=C double bonds C3—C4 and C6—C7 are of significantly different lenghts (1.373 (10) and 1.403 (10) Å respectively). As expected for platinum(II) complexes, the platinum atom is in a square planar environment (ΣPtα= 359.71°).

Experimental

Diiodo(1,5-cyclooctadiene)platinum(II) was purchased from Strem chemicals and used as received. Crystals were grown by slow evaportion of a codPtI2 solution in CH2Cl2.

Refinement

All hydrogen atoms were placed in idealized position and refined using a riding model with d(C–H) = 0.98 Å, Uiso=1.2Ueq (C) for vinylic protons and 0.97 Å, Uiso=1.2Ueq (C) for methylene protons.

Figures

Fig. 1.
The molecular structure of 1 showing the numbering scheme adopted. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level.

Crystal data

[PtI2(C8H12)]F(000) = 976
Mr = 557.07Dx = 3.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8928 reflections
a = 8.3063 (13) Åθ = 2.5–28.1°
b = 10.8918 (17) ŵ = 17.98 mm1
c = 12.939 (2) ÅT = 296 K
β = 106.892 (2)°Rectangulaire, yellow
V = 1120.1 (3) Å30.58 × 0.56 × 0.42 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2714 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 28.1°, θmin = 2.5°
Absorption correction: integration (XPREP; Bruker, 2005)h = −10→10
Tmin = 0.023, Tmax = 0.049k = −14→14
13155 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.073w = 1/[σ2(Fo2) + (0.0427P)2 + 1.2011P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
2714 reflectionsΔρmax = 2.65 e Å3
105 parametersΔρmin = −1.77 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00188 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.24239 (2)0.111767 (17)0.248867 (13)0.02846 (9)
I10.54151 (5)0.14392 (4)0.38327 (4)0.05103 (13)
I20.37225 (5)0.08198 (4)0.08927 (3)0.05224 (13)
C3−0.0015 (7)0.0311 (6)0.1590 (5)0.0481 (13)
H30.0045−0.02470.10080.07 (2)*
C2−0.0933 (8)−0.0214 (6)0.2341 (6)0.0600 (17)
H2A−0.1348−0.10260.20910.072*
H2B−0.18980.03000.23160.072*
C60.1178 (7)0.1941 (6)0.3600 (5)0.0453 (13)
H60.18980.24880.41420.09 (3)*
C70.1446 (8)0.0687 (7)0.3837 (5)0.0492 (14)
H70.23190.05180.45150.040 (15)*
C4−0.0014 (8)0.1533 (7)0.1329 (6)0.0539 (16)
H40.00430.16830.05940.09 (3)*
C10.0170 (9)−0.0302 (7)0.3499 (6)0.0645 (18)
H1A−0.0545−0.02880.39730.077*
H1B0.0746−0.10870.35970.077*
C5−0.0526 (8)0.2486 (6)0.2996 (6)0.0620 (18)
H5A−0.14070.19910.31420.074*
H5B−0.06070.33060.32700.074*
C8−0.0825 (9)0.2558 (7)0.1778 (7)0.076 (2)
H8A−0.20270.25440.14250.091*
H8B−0.03940.33350.16060.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.02846 (13)0.02936 (13)0.02927 (14)0.00017 (6)0.01107 (9)−0.00161 (6)
I10.0321 (2)0.0726 (3)0.0459 (2)−0.00714 (15)0.00754 (17)−0.00476 (18)
I20.0537 (3)0.0707 (3)0.0402 (2)0.00935 (18)0.02613 (18)−0.00156 (18)
C30.040 (3)0.056 (3)0.045 (3)−0.011 (2)0.007 (2)−0.015 (3)
C20.056 (4)0.055 (4)0.073 (4)−0.024 (3)0.025 (3)−0.020 (3)
C60.042 (3)0.056 (3)0.045 (3)−0.006 (2)0.023 (2)−0.019 (3)
C70.040 (3)0.083 (4)0.029 (3)−0.005 (3)0.017 (2)0.001 (3)
C40.031 (3)0.082 (5)0.047 (4)0.013 (3)0.008 (3)0.008 (3)
C10.066 (4)0.062 (4)0.075 (5)−0.012 (3)0.037 (4)0.013 (3)
C50.045 (3)0.045 (3)0.102 (6)0.003 (2)0.032 (3)−0.023 (3)
C80.051 (4)0.076 (5)0.102 (6)0.027 (3)0.022 (4)0.029 (4)

Geometric parameters (Å, °)

Pt1—C72.179 (5)C6—C51.525 (9)
Pt1—C42.188 (6)C6—H60.9800
Pt1—C62.193 (5)C7—C11.485 (9)
Pt1—C32.205 (5)C7—H70.9800
Pt1—I12.6094 (5)C4—C81.505 (10)
Pt1—I22.6130 (5)C4—H40.9800
C3—C41.373 (10)C1—H1A0.9700
C3—C21.511 (8)C1—H1B0.9700
C3—H30.9800C5—C81.525 (11)
C2—C11.516 (10)C5—H5A0.9700
C2—H2A0.9700C5—H5B0.9700
C2—H2B0.9700C8—H8A0.9700
C6—C71.403 (10)C8—H8B0.9700
C7—Pt1—C496.2 (3)Pt1—C6—H6114.3
C7—Pt1—C637.4 (3)C6—C7—C1126.0 (6)
C4—Pt1—C681.2 (2)C6—C7—Pt171.8 (3)
C7—Pt1—C380.6 (2)C1—C7—Pt1108.7 (4)
C4—Pt1—C336.4 (3)C6—C7—H7114.0
C6—Pt1—C388.4 (2)C1—C7—H7114.0
C7—Pt1—I189.98 (16)Pt1—C7—H7114.0
C4—Pt1—I1160.3 (2)C3—C4—C8126.3 (6)
C6—Pt1—I192.71 (15)C3—C4—Pt172.4 (3)
C3—Pt1—I1162.96 (17)C8—C4—Pt1108.5 (5)
C7—Pt1—I2160.3 (2)C3—C4—H4113.8
C4—Pt1—I289.78 (19)C8—C4—H4113.8
C6—Pt1—I2162.00 (17)Pt1—C4—H4113.8
C3—Pt1—I293.50 (15)C7—C1—C2114.8 (5)
I1—Pt1—I290.662 (19)C7—C1—H1A108.6
C4—C3—C2124.1 (6)C2—C1—H1A108.6
C4—C3—Pt171.1 (3)C7—C1—H1B108.6
C2—C3—Pt1111.7 (4)C2—C1—H1B108.6
C4—C3—H3114.1H1A—C1—H1B107.5
C2—C3—H3114.1C8—C5—C6113.4 (5)
Pt1—C3—H3114.1C8—C5—H5A108.9
C3—C2—C1112.7 (5)C6—C5—H5A108.9
C3—C2—H2A109.0C8—C5—H5B108.9
C1—C2—H2A109.0C6—C5—H5B108.9
C3—C2—H2B109.0H5A—C5—H5B107.7
C1—C2—H2B109.0C4—C8—C5113.9 (6)
H2A—C2—H2B107.8C4—C8—H8A108.8
C7—C6—C5123.8 (5)C5—C8—H8A108.8
C7—C6—Pt170.7 (3)C4—C8—H8B108.8
C5—C6—Pt1111.6 (4)C5—C8—H8B108.8
C7—C6—H6114.3H8A—C8—H8B107.7
C5—C6—H6114.3
C7—Pt1—C3—C4114.0 (4)I2—Pt1—C7—C6−173.6 (4)
C6—Pt1—C3—C477.2 (4)C4—Pt1—C7—C156.1 (5)
I1—Pt1—C3—C4171.3 (4)C6—Pt1—C7—C1122.8 (6)
I2—Pt1—C3—C4−84.9 (4)C3—Pt1—C7—C123.0 (5)
C7—Pt1—C3—C2−6.1 (5)I1—Pt1—C7—C1−142.7 (5)
C4—Pt1—C3—C2−120.2 (6)I2—Pt1—C7—C1−50.8 (8)
C6—Pt1—C3—C2−43.0 (5)C2—C3—C4—C83.5 (11)
I1—Pt1—C3—C251.1 (8)Pt1—C3—C4—C8−100.4 (7)
I2—Pt1—C3—C2155.0 (4)C2—C3—C4—Pt1103.9 (6)
C4—C3—C2—C1−93.3 (8)C7—Pt1—C4—C3−65.0 (4)
Pt1—C3—C2—C1−12.0 (7)C6—Pt1—C4—C3−99.4 (4)
C4—Pt1—C6—C7112.4 (4)I1—Pt1—C4—C3−172.5 (4)
C3—Pt1—C6—C776.6 (4)I2—Pt1—C4—C396.2 (4)
I1—Pt1—C6—C7−86.4 (3)C7—Pt1—C4—C858.2 (5)
I2—Pt1—C6—C7173.0 (4)C6—Pt1—C4—C823.8 (5)
C7—Pt1—C6—C5−119.7 (6)C3—Pt1—C4—C8123.2 (7)
C4—Pt1—C6—C5−7.2 (4)I1—Pt1—C4—C8−49.2 (9)
C3—Pt1—C6—C5−43.1 (4)I2—Pt1—C4—C8−140.6 (5)
I1—Pt1—C6—C5153.9 (4)C6—C7—C1—C243.1 (9)
I2—Pt1—C6—C553.4 (7)Pt1—C7—C1—C2−37.6 (8)
C5—C6—C7—C13.3 (9)C3—C2—C1—C733.5 (9)
Pt1—C6—C7—C1−100.3 (6)C7—C6—C5—C8−91.6 (7)
C5—C6—C7—Pt1103.6 (5)Pt1—C6—C5—C8−11.0 (7)
C4—Pt1—C7—C6−66.7 (4)C3—C4—C8—C543.9 (10)
C3—Pt1—C7—C6−99.8 (4)Pt1—C4—C8—C5−37.5 (8)
I1—Pt1—C7—C694.5 (3)C6—C5—C8—C432.8 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2283).

References

  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). XPREP and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem.23, 3673–3674.
  • Thibault, M.-H., Lucier, B. E. G., Schurko, R. W. & Fontaine, F.-G. (2009). Dalton Trans. doi:10.1039/b907737e.
  • Wiedermann, J., Benito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (deposition number CCDC 273860). CCDC, Union Road, Cambridge, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography