PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1088.
Published online 2009 August 19. doi:  10.1107/S1600536809032127
PMCID: PMC2969998

catena-Poly[[[tetra­aqua­zinc(II)]-μ-4,4′-bipyridine-κ2 N:N′] naphthalene-1,5-disulfonate]

Abstract

In the title complex, {[Zn(C10H8N2)(H2O)4](C10H6O6S2)}n, the [Zn(4,4′-bipy)(H2O)4]2+ (4,4′-bipy is 4,4′-bipyridine) cations are linked into linear chains along [001] by the 4,4′-bipy ligands. The ZnII ion exhibits a slightly distorted octa­hedral coordination geometry in which the four water mol­ecules are in the equatorial positions. The anions are hydrogen bonded to the polycationic chains by O—H(...)O hydrogen bonds, forming a three-dimensional network. The ZnII ion, 4,4′-bipy ligand and anion lie on special positions of 2/m site symmetry.

Related literature

For the design, preparation and applications of metal-organic hybrid materials, see: Batten & Robson (1998 [triangle]); Hagrman et al. (1999 [triangle]); Cui et al. (2003 [triangle]). For the structural and photoluminescent properties of d 10 metal (such as Zn) complexes, see: Li et al. (2003 [triangle]); Sattarzadeh et al. (2009 [triangle]). 4,4′-Bipyridine can be used to assembly many transition metal coordination polymers through covalent or hydrogen bonds, see: Yaghi & Li (1995 [triangle], 1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1088-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H8N2)(H2O)4](C10H6O6S2)
  • M r = 579.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1088-efi1.jpg
  • a = 14.584 (3) Å
  • b = 7.3948 (15) Å
  • c = 11.380 (2) Å
  • β = 108.38 (3)°
  • V = 1164.7 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 293 K
  • 0.38 × 0.29 × 0.19 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.658, T max = 0.794
  • 5711 measured reflections
  • 1421 independent reflections
  • 1302 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.107
  • S = 1.03
  • 1421 reflections
  • 107 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: SMART (Siemens, 1994 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032127/ng2626sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032127/ng2626Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian Province (No. 2008 J0172).

supplementary crystallographic information

Comment

The design and preparation of metal-organic hybrid materials have been studied widely during the past decade owing to their intriguing structures and potential practical applications. (Hagrman et al., 1999; Batten & Robson, 1998; Cui et al., 2003). It has been demonstrated that many d10 metal(such as Zn) complexes present intriguing structural and photoluminescent properties (Li et al.,2003; Sattarzadeh et al., 2009). On the other hand, bridged ligand,4,4'-bipyridine, can be efficiently used to assembly many interesting transition metal coordination polymers through covalent or hydrogen bonds (Yaghi & Li, 1995, 1996). In this work, we use 4,4'-bpy, 1, 5-naphthalenedisulphonic acid(NDS) and Zn(OAc)2 to synthesize a novel 1-D chain polymer through hydrothermal synthesis.

Complex (I) consists of one-dimensional chains formed by 4,4'- bipy ligands through connecting Zn atoms,uncoordinated NDS2- anions, as shown in Fig. 1. The [Zn(4,4'-bipy)(H2O)4]2+ cation is located on a twofold rotation axis that passes through atoms Zn1, N1 and C3. In the cation, the Zn1 atom exhibits slightly distorted octahedral coordination geometry, completed by four O atoms from four water molecules in the equatorial positions and two N donors from two 4,4'-bipy ligands in the apical positions. These Zn–O and Zn–N distances are 2.127 (2) and 2.131 (2) Å, respectively. The 4,4'-bipy ligand acts as bis-monodentate linkers and bridge adjacent Zn centers with the Zn···Zn separation of 11.380 (2)Å into an infinite one-dimensional chain.

In complex (I), the NDS2- anions are not involved in coordination but hydrogen-bondedto the [Zn(4,4'-bipy)(H2O)4]2+ cations through the sulfonate oxygen atoms and the coordinated oxygen atoms, forming a three-dimensional hydrogen-bonding network, as shown in Fig. 2.

Experimental

The hydrothermal reaction of Zn(OAc)2.2H2O (0.5707 g,2.6 mmol), 1,5-Naphthalenedisulphonic acid(0.5405 g, 1.5 mmol), 4,4'-bipyridine(0.4681 g, 3.0 mmol) and water (15 ml) was carried out at 443 K for 3 d. After cooling to room temperature at 5 K h-1, the colorless block crystalline complex, (I), was isolated in 49% yield (based on Zn).

Refinement

H atoms attached to C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å, and Uiso(H)= 1.2Ueq(C); Water H atoms were located in a difference map and refined with O–H and H···H distance restraints of 0.85 (2) and 1.39 (2) Å, respectively, and with Uiso(H)= 1.5Ueq(O). During the refinement, the displacement parameters of the C1 and C2 atoms were restrained to an approximately isotropic behaviour.

Figures

Fig. 1.
View of the structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H atoms have been omitted for clarity.
Fig. 2.
View of the 3D hydrogen-bonded network in the packing of the title compound. The packing is viewed along the b axis; O-H···O interactions are shown as dashed lines.

Crystal data

[Zn(C10H8N2)(H2O)4](C10H6O6S2)F(000) = 596
Mr = 579.89Dx = 1.654 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 5711 reflections
a = 14.584 (3) Åθ = 3.1–27.4°
b = 7.3948 (15) ŵ = 1.29 mm1
c = 11.380 (2) ÅT = 293 K
β = 108.38 (3)°Block, colorless
V = 1164.7 (4) Å30.38 × 0.29 × 0.19 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer1421 independent reflections
Radiation source: fine-focus sealed tube1302 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→18
Tmin = 0.658, Tmax = 0.794k = −9→9
5711 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0663P)2 + 1.4457P] where P = (Fo2 + 2Fc2)/3
1421 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.46 e Å3
15 restraintsΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.50000.50000.0328 (2)
S10.84039 (6)0.50000.70300 (8)0.0323 (3)
O1W0.60582 (14)0.7084 (3)0.54834 (19)0.0443 (5)
H1WA0.6631 (16)0.698 (5)0.596 (2)0.053*
H1WB0.605 (2)0.790 (4)0.498 (3)0.053*
O20.8672 (2)0.50000.5896 (2)0.0451 (7)
O30.78840 (14)0.6629 (3)0.71577 (18)0.0425 (5)
C10.5820 (3)0.50000.7822 (4)0.0669 (15)
H1A0.64030.50000.76510.080*
C20.5848 (3)0.50000.9042 (4)0.0647 (14)
H2A0.64400.50000.96670.078*
C30.4997 (3)0.50000.9346 (3)0.0324 (8)
C40.4162 (3)0.50000.8359 (3)0.0364 (8)
H4A0.35680.50000.85010.044*
C50.4189 (3)0.50000.7155 (3)0.0337 (8)
H5A0.36070.50000.65110.040*
C60.8693 (3)0.50000.9887 (4)0.0580 (14)
H6A0.80900.50000.92830.070*
C70.9543 (2)0.50000.9528 (3)0.0329 (8)
C80.9520 (3)0.50000.8266 (3)0.0338 (8)
C91.0349 (3)0.50000.7957 (4)0.0549 (13)
H9A1.03220.50000.71300.066*
C101.1247 (3)0.50000.8898 (5)0.080 (2)
H10A1.18120.50000.86840.096*
N10.5005 (2)0.50000.6874 (3)0.0371 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0270 (3)0.0560 (4)0.0140 (3)0.0000.0046 (2)0.000
S10.0278 (5)0.0414 (5)0.0202 (4)0.000−0.0030 (3)0.000
O1W0.0347 (10)0.0589 (13)0.0301 (10)−0.0062 (9)−0.0031 (8)0.0086 (9)
O20.0468 (16)0.0607 (18)0.0213 (13)0.0000.0014 (12)0.000
O30.0360 (10)0.0440 (11)0.0372 (10)0.0048 (8)−0.0033 (8)−0.0028 (8)
C10.036 (2)0.137 (4)0.030 (2)0.0000.0134 (18)0.000
C20.032 (2)0.135 (4)0.027 (2)0.0000.0088 (17)0.000
C30.0311 (18)0.048 (2)0.0190 (17)0.0000.0089 (14)0.000
C40.0294 (17)0.058 (2)0.0230 (17)0.0000.0106 (14)0.000
C50.0302 (17)0.050 (2)0.0186 (16)0.0000.0044 (13)0.000
C60.0194 (17)0.120 (5)0.029 (2)0.000−0.0003 (15)0.000
C70.0241 (17)0.046 (2)0.0247 (17)0.0000.0027 (15)0.000
C80.0244 (16)0.049 (2)0.0224 (16)0.000−0.0008 (13)0.000
C90.034 (2)0.106 (4)0.0219 (18)0.0000.0048 (16)0.000
C100.025 (2)0.178 (7)0.036 (3)0.0000.0093 (19)0.000
N10.0307 (15)0.065 (2)0.0157 (13)0.0000.0072 (12)0.000

Geometric parameters (Å, °)

Zn1—O1Wi2.127 (2)C3—C41.372 (5)
Zn1—O1W2.127 (2)C3—C3iv1.485 (6)
Zn1—O1Wii2.127 (2)C4—C51.383 (5)
Zn1—O1Wiii2.127 (2)C4—H4A0.9300
Zn1—N1i2.131 (3)C5—N11.326 (5)
Zn1—N12.131 (3)C5—H5A0.9300
S1—O3ii1.455 (2)C6—C10v1.358 (6)
S1—O31.455 (2)C6—C71.421 (5)
S1—O21.461 (3)C6—H6A0.9300
S1—C81.784 (4)C7—C7v1.424 (7)
O1W—H1WA0.846 (19)C7—C81.426 (5)
O1W—H1WB0.83 (2)C8—C91.362 (6)
C1—N11.330 (6)C9—C101.406 (6)
C1—C21.376 (6)C9—H9A0.9300
C1—H1A0.9300C10—C6v1.358 (6)
C2—C31.390 (6)C10—H10A0.9300
C2—H2A0.9300
O1Wi—Zn1—O1W180.00 (9)C3—C2—H2A119.8
O1Wi—Zn1—O1Wii87.13 (12)C4—C3—C2115.3 (3)
O1W—Zn1—O1Wii92.87 (12)C4—C3—C3iv123.0 (4)
O1Wi—Zn1—O1Wiii92.87 (12)C2—C3—C3iv121.7 (4)
O1W—Zn1—O1Wiii87.13 (12)C3—C4—C5121.1 (3)
O1Wii—Zn1—O1Wiii180.000 (1)C3—C4—H4A119.4
O1Wi—Zn1—N1i88.18 (8)C5—C4—H4A119.4
O1W—Zn1—N1i91.82 (8)N1—C5—C4123.1 (3)
O1Wii—Zn1—N1i91.82 (8)N1—C5—H5A118.4
O1Wiii—Zn1—N1i88.18 (8)C4—C5—H5A118.4
O1Wi—Zn1—N191.82 (8)C10v—C6—C7120.7 (4)
O1W—Zn1—N188.18 (8)C10v—C6—H6A119.7
O1Wii—Zn1—N188.18 (8)C7—C6—H6A119.7
O1Wiii—Zn1—N191.82 (8)C6—C7—C7v118.6 (4)
N1i—Zn1—N1180.0C6—C7—C8122.9 (3)
O3ii—S1—O3111.78 (18)C7v—C7—C8118.5 (4)
O3ii—S1—O2112.40 (11)C9—C8—C7121.3 (3)
O3—S1—O2112.40 (11)C9—C8—S1117.4 (3)
O3ii—S1—C8107.20 (10)C7—C8—S1121.3 (3)
O3—S1—C8107.20 (10)C8—C9—C10119.6 (4)
O2—S1—C8105.36 (17)C8—C9—H9A120.2
Zn1—O1W—H1WA126 (3)C10—C9—H9A120.2
Zn1—O1W—H1WB120 (2)C6v—C10—C9121.3 (4)
H1WA—O1W—H1WB108 (3)C6v—C10—H10A119.3
N1—C1—C2123.5 (4)C9—C10—H10A119.3
N1—C1—H1A118.2C5—N1—C1116.5 (3)
C2—C1—H1A118.2C5—N1—Zn1121.4 (2)
C1—C2—C3120.5 (4)C1—N1—Zn1122.1 (3)
C1—C2—H2A119.8
N1—C1—C2—C30.000 (2)C7—C8—C9—C100.000 (2)
C1—C2—C3—C40.000 (2)S1—C8—C9—C10180.000 (2)
C1—C2—C3—C3iv180.000 (2)C8—C9—C10—C6v0.000 (2)
C2—C3—C4—C50.000 (1)C4—C5—N1—C10.000 (2)
C3iv—C3—C4—C5180.000 (1)C4—C5—N1—Zn1180.000 (1)
C3—C4—C5—N10.000 (2)C2—C1—N1—C50.000 (1)
C10v—C6—C7—C7v0.000 (2)C2—C1—N1—Zn1180.000 (1)
C10v—C6—C7—C8180.000 (2)O1Wi—Zn1—N1—C5−46.47 (6)
C6—C7—C8—C9180.000 (2)O1W—Zn1—N1—C5133.53 (6)
C7v—C7—C8—C90.000 (2)O1Wii—Zn1—N1—C5−133.53 (6)
C6—C7—C8—S10.000 (1)O1Wiii—Zn1—N1—C546.47 (6)
C7v—C7—C8—S1180.000 (1)N1i—Zn1—N1—C50(100)
O3ii—S1—C8—C9119.92 (10)O1Wi—Zn1—N1—C1133.53 (6)
O3—S1—C8—C9−119.92 (10)O1W—Zn1—N1—C1−46.47 (6)
O2—S1—C8—C90.0O1Wii—Zn1—N1—C146.47 (6)
O3ii—S1—C8—C7−60.08 (10)O1Wiii—Zn1—N1—C1−133.53 (6)
O3—S1—C8—C760.08 (10)N1i—Zn1—N1—C1180 (100)
O2—S1—C8—C7180.000 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1, z; (iii) −x+1, y, −z+1; (iv) −x+1, −y+1, −z+2; (v) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1wa···O30.85 (2)1.92 (2)2.763 (3)175 (3)
O1w—H1wb···O2vi0.83 (2)1.95 (2)2.768 (3)166 (3)

Symmetry codes: (vi) −x+3/2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2626).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Cui, Y., Ngo, H. L., White, P. S. & Lin, W. (2003). Inorg. Chem.42, 652–654. [PubMed]
  • Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [PubMed]
  • Li, R. Z., Li, D., Huang, X. C., Qi, Z. Y. & Chen, X. M. (2003). Inorg. Chem. Commun.6, 1017–1019.
  • Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m712–m713. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc.117, 10401–10402.
  • Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc.118, 295–296.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography