PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2068.
Published online 2009 August 8. doi:  10.1107/S1600536809030049
PMCID: PMC2969994

N-(4-Nitro­phen­yl)cinnamamide

Abstract

In the mol­ecule of the title compound, C15H12N2O3, the dihedral angle between the rings is 3.04 (8)°. The central NOC3 fragment is planar [maximum deviation = 0.005 (3) Å] and is oriented at dihedral angles of 8.23 (8) and 7.29 (9)° with respect to the phenyl and nitro­phenyl rings, respectively. In the crystal structure, inter­molecular N—H(...)O and C—H(...)O inter­actions link the mol­ecules into a two-dimensional network. π–π contacts between rings [centroid–centroid distance = 3.719 (1) Å] may further stabilize the structure.

Related literature

For general background to N-substituted benzamides, see: Beccalli et al. (2005 [triangle]); Calderone et al. (2006 [triangle]); Lindgren et al. (2001 [triangle]); Olsson et al. (2002 [triangle]); Vega-Noverola et al. (1989 [triangle]); Zhichkin et al. (2007 [triangle]). For related structures, see: Nissa et al. (2002 [triangle], 2004 [triangle]); Peeters et al. (1986 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2068-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O3
  • M r = 268.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2068-efi1.jpg
  • a = 5.903 (3) Å
  • b = 15.050 (9) Å
  • c = 14.388 (9) Å
  • β = 95.38 (3)°
  • V = 1272.6 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.980, T max = 0.984
  • 10408 measured reflections
  • 2886 independent reflections
  • 1994 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.117
  • S = 1.07
  • 2886 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030049/hk2746sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030049/hk2746Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AS gratefully acknowledges a research grant from Quaid-i-Azam University Islamabad under the URF program.

supplementary crystallographic information

Comment

N-substituted benzamides, e.g., declopramideare, are well known anticancer compounds and the mechanism of benzamide-induced apoptosis has been studied, (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor-B and nuclear factor of activated T cells (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989), while heterocyclic benzanilide are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). As part of our work on the structure of benzanilides and related compounds, we report herein the crystal structure of the title compound.

A search of the Cambridge Crystallographic Database (CSD version 5.30; Allen, 2002) for a fragment containing the title compound without NO2 group revealed only four entries containg the basic skeleton of the title compound with refcodes: DIPHUF (Peeters et al., 1986), EHATUC and EHAVAK (Nissa et al., 2002) and FALQAL (Nissa et al., 2004).

In the molecule of the title compound (Fig. 1), rings A (C1-C6) and B (C10-C15) are, of course, planar and they are oriented at a dihedral angle of A/B = 3.04 (8)°. The (O1/N1/C7-C9) moiety is planar with a maximum deviation of -0.005 (3) Å for atom C8 and it is oriented with respect to rings A and B at dihedral angles of 8.23 (8) and 7.29 (9) °, respectively.

In the crystal structure, intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the phenyl rings, Cg1—Cg2i [symmetry code: (i) 1 - x, y - 1/2, 1/2 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distance of 3.719 (1) Å.

Experimental

For the preparation of the title compound, cinnamic acid was converted into cinnamoyl chloride using the standard procedure. A stirred solution of cinnamoyl chloride (5.4 mmol) in CHCl3 was treated with p-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1.0 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in MeOH afforded the title compound (yield; 81%) as colorless crystals: Anal. calcd. for C15H12N2O3: C, 67.16; H, 4.51; N, 10.44; found: C, 67.21; H, 4.59; N, 10.41.

Refinement

H atoms were positioned geometrically with N-H = 0.88 Å (for NH) and C-H = 0.95 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
Fig. 2.
A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H12N2O3F(000) = 560
Mr = 268.27Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10408 reflections
a = 5.903 (3) Åθ = 3.1–27.4°
b = 15.050 (9) ŵ = 0.10 mm1
c = 14.388 (9) ÅT = 173 K
β = 95.38 (3)°Block, colorless
V = 1272.6 (13) Å30.20 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2886 independent reflections
Radiation source: fine-focus sealed tube1994 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −7→7
Tmin = 0.980, Tmax = 0.984k = −18→19
10408 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2254P] where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.73930 (18)0.43225 (7)0.92756 (8)0.0419 (3)
O20.2344 (2)0.02701 (7)0.81198 (8)0.0477 (3)
O3−0.0962 (2)0.07667 (8)0.75877 (9)0.0534 (4)
N10.3863 (2)0.44089 (8)0.84727 (9)0.0327 (3)
H10.28500.47940.82330.039*
N20.1031 (2)0.08866 (8)0.79176 (9)0.0368 (3)
C10.7780 (2)0.71883 (10)0.93224 (10)0.0299 (3)
C20.9858 (3)0.75660 (11)0.96491 (10)0.0355 (4)
H21.10950.71910.98620.043*
C31.0150 (3)0.84803 (11)0.96685 (11)0.0416 (4)
H31.15800.87270.98920.050*
C40.8371 (3)0.90315 (11)0.93650 (11)0.0415 (4)
H40.85740.96580.93750.050*
C50.6279 (3)0.86698 (11)0.90433 (11)0.0401 (4)
H50.50470.90480.88350.048*
C60.5991 (3)0.77560 (10)0.90259 (10)0.0346 (4)
H60.45530.75130.88090.041*
C70.7580 (2)0.62167 (10)0.92964 (10)0.0316 (4)
H70.88270.58870.95840.038*
C80.5822 (2)0.57539 (10)0.89084 (10)0.0334 (4)
H80.45350.60610.86210.040*
C90.5825 (2)0.47700 (10)0.89143 (10)0.0316 (4)
C100.3266 (2)0.35165 (10)0.83539 (10)0.0282 (3)
C110.4746 (2)0.28151 (10)0.85797 (10)0.0316 (4)
H110.62610.29300.88340.038*
C120.4016 (3)0.19496 (10)0.84341 (10)0.0322 (4)
H120.50210.14670.85860.039*
C130.1807 (2)0.17939 (9)0.80651 (10)0.0300 (3)
C140.0315 (2)0.24827 (10)0.78241 (10)0.0323 (4)
H14−0.11910.23620.75620.039*
C150.1037 (2)0.33422 (10)0.79678 (10)0.0315 (3)
H150.00260.38210.78060.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0340 (6)0.0328 (6)0.0563 (7)0.0019 (5)−0.0103 (5)−0.0006 (5)
O20.0508 (7)0.0283 (6)0.0626 (8)0.0039 (6)−0.0020 (6)0.0050 (5)
O30.0390 (7)0.0386 (7)0.0794 (9)−0.0086 (5)−0.0118 (6)−0.0074 (6)
N10.0305 (7)0.0242 (7)0.0418 (7)0.0007 (5)−0.0051 (5)0.0016 (6)
N20.0403 (8)0.0300 (7)0.0397 (8)−0.0026 (6)0.0021 (6)−0.0015 (6)
C10.0325 (8)0.0302 (8)0.0269 (7)−0.0008 (6)0.0027 (6)−0.0009 (6)
C20.0356 (8)0.0348 (9)0.0354 (8)−0.0007 (7)−0.0012 (6)−0.0009 (7)
C30.0430 (10)0.0373 (9)0.0436 (10)−0.0102 (8)−0.0009 (7)−0.0050 (7)
C40.0543 (10)0.0278 (9)0.0426 (10)−0.0049 (8)0.0057 (8)−0.0017 (7)
C50.0453 (10)0.0328 (9)0.0420 (9)0.0059 (8)0.0024 (7)0.0025 (7)
C60.0328 (8)0.0346 (9)0.0358 (8)−0.0008 (7)0.0009 (6)−0.0010 (7)
C70.0330 (8)0.0311 (8)0.0307 (8)0.0010 (7)0.0027 (6)0.0005 (6)
C80.0318 (8)0.0306 (8)0.0370 (8)−0.0003 (7)−0.0003 (6)0.0021 (7)
C90.0307 (8)0.0303 (8)0.0337 (8)−0.0026 (7)0.0016 (6)0.0003 (6)
C100.0298 (8)0.0272 (8)0.0275 (7)0.0004 (6)0.0019 (6)−0.0002 (6)
C110.0282 (8)0.0311 (8)0.0344 (8)0.0008 (6)−0.0029 (6)−0.0004 (6)
C120.0330 (8)0.0298 (8)0.0332 (8)0.0036 (7)−0.0009 (6)0.0001 (6)
C130.0329 (8)0.0248 (7)0.0322 (8)−0.0016 (6)0.0027 (6)−0.0007 (6)
C140.0271 (7)0.0332 (8)0.0363 (8)−0.0016 (7)0.0013 (6)−0.0020 (7)
C150.0283 (7)0.0314 (8)0.0343 (8)0.0033 (6)0.0010 (6)0.0016 (7)

Geometric parameters (Å, °)

O1—C91.2207 (18)C5—H50.9500
O2—N21.2264 (17)C6—H60.9500
O3—N21.2397 (17)C7—C81.329 (2)
N1—C91.3790 (19)C7—H70.9500
N1—C101.395 (2)C8—C91.481 (2)
N1—H10.8800C8—H80.9500
N2—C131.450 (2)C10—C111.389 (2)
C1—C21.393 (2)C10—C151.404 (2)
C1—C61.394 (2)C11—C121.382 (2)
C1—C71.467 (2)C11—H110.9500
C2—C31.387 (2)C12—C131.381 (2)
C2—H20.9500C12—H120.9500
C3—C41.377 (2)C13—C141.383 (2)
C3—H30.9500C14—C151.372 (2)
C4—C51.389 (2)C14—H140.9500
C4—H40.9500C15—H150.9500
C5—C61.386 (2)
C9—N1—C10128.87 (13)C1—C7—H7116.9
C9—N1—H1115.6C7—C8—C9121.43 (14)
C10—N1—H1115.6C7—C8—H8119.3
O2—N2—O3122.46 (13)C9—C8—H8119.3
O2—N2—C13119.59 (13)O1—C9—N1123.31 (14)
O3—N2—C13117.95 (13)O1—C9—C8123.67 (14)
C2—C1—C6118.10 (14)N1—C9—C8113.01 (13)
C2—C1—C7118.78 (14)C11—C10—N1123.82 (13)
C6—C1—C7123.12 (13)C11—C10—C15119.74 (14)
C3—C2—C1121.03 (15)N1—C10—C15116.44 (13)
C3—C2—H2119.5C12—C11—C10120.02 (14)
C1—C2—H2119.5C12—C11—H11120.0
C4—C3—C2120.12 (15)C10—C11—H11120.0
C4—C3—H3119.9C13—C12—C11119.22 (14)
C2—C3—H3119.9C13—C12—H12120.4
C3—C4—C5119.84 (15)C11—C12—H12120.4
C3—C4—H4120.1C12—C13—C14121.69 (14)
C5—C4—H4120.1C12—C13—N2119.36 (13)
C6—C5—C4119.92 (15)C14—C13—N2118.95 (14)
C6—C5—H5120.0C15—C14—C13119.18 (14)
C4—C5—H5120.0C15—C14—H14120.4
C5—C6—C1120.97 (15)C13—C14—H14120.4
C5—C6—H6119.5C14—C15—C10120.14 (14)
C1—C6—H6119.5C14—C15—H15119.9
C8—C7—C1126.22 (14)C10—C15—H15119.9
C8—C7—H7116.9
C6—C1—C2—C3−0.8 (2)C9—N1—C10—C15172.82 (14)
C7—C1—C2—C3178.57 (14)N1—C10—C11—C12−179.62 (14)
C1—C2—C3—C40.2 (2)C15—C10—C11—C12−0.7 (2)
C2—C3—C4—C50.3 (2)C10—C11—C12—C13−0.1 (2)
C3—C4—C5—C6−0.2 (2)C11—C12—C13—C141.0 (2)
C4—C5—C6—C1−0.4 (2)C11—C12—C13—N2−179.58 (14)
C2—C1—C6—C50.9 (2)O2—N2—C13—C12−0.2 (2)
C7—C1—C6—C5−178.44 (14)O3—N2—C13—C12179.82 (14)
C2—C1—C7—C8−171.67 (14)O2—N2—C13—C14179.28 (14)
C6—C1—C7—C87.6 (2)O3—N2—C13—C14−0.7 (2)
C1—C7—C8—C9179.17 (14)C12—C13—C14—C15−1.0 (2)
C10—N1—C9—O10.5 (2)N2—C13—C14—C15179.59 (13)
C10—N1—C9—C8−179.20 (14)C13—C14—C15—C100.1 (2)
C7—C8—C9—O10.8 (2)C11—C10—C15—C140.8 (2)
C7—C8—C9—N1−179.53 (14)N1—C10—C15—C14179.72 (13)
C9—N1—C10—C11−8.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.132.991 (2)166
C5—H5···O2ii0.952.583.519 (2)168

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2746).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem.41, 761–767. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol.38, 267–277. [PubMed]
  • Nissa, M. N., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol.39, 643–649.
  • Nissa, M. N., Velmurugan, D., Raj, S. S. S., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol.37, 125–133.
  • Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [PMC free article] [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Peeters, O. M., Blaton, N. M. & de Ranter, C. J. (1986). Acta Cryst. C42, 1233–1235.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography