PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1075.
Published online 2009 August 15. doi:  10.1107/S1600536809031560
PMCID: PMC2969990

(Methoxo-κO)oxidobis(quinolin-8-olato-κ2 N,O)vanadium(V)

Abstract

In the title complex, [V(C9H6NO)2(CH3O)O], the central VV atom is coordinated by the O atoms from the oxido and methoxo ligands and the N and O atoms of two bis-chelating quinolin-8-olate ligands, forming a distorted octa­hedral environment. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds connect mol­ecules into centrosymmetric dimers which are, in turn, linked by weak C—H(...)π inter­actions into chains along the b axis.

Related literature

For the properties of vanadium compounds, see: Crans et al. (2004 [triangle]); Diego et al. (2003 [triangle]); Thompson & Orvig (2006 [triangle]). For the structures of oxidovandium complexes see: Hoshina et al. (1998 [triangle]); Otieno et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1075-scheme1.jpg

Experimental

Crystal data

  • [V(C9H6NO)2(CH3O)O]
  • M r = 386.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1075-efi1.jpg
  • a = 14.0405 (16) Å
  • b = 8.0019 (1) Å
  • c = 15.5920 (18) Å
  • β = 110.560 (1)°
  • V = 1640.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 298 K
  • 0.44 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.768, T max = 0.900
  • 7660 measured reflections
  • 2893 independent reflections
  • 1378 reflections with I > 2σ(I)
  • R int = 0.102

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.230
  • S = 1.00
  • 2893 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond angles (°)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031560/lh2870sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031560/lh2870Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

supplementary crystallographic information

Comment

Vanadium is a biologically essential trace element, encountered in metalloenzymes such as haloperoxidases or nitrogenases. Its coordination chemistry has received increasing attention due to the fact that vanadium compounds in various oxidation states have insulin-mimetic properties (Diego et al., 2003; Crans et al., 2004; Thompson & Orvig, 2006). We report here the synthesis and crystal structure of the title complex.

In the molecular structure (Fig.1.), the central VV atom is six-coordinated by the O atoms of the oxo and methoxo ligands and the N atoms and O atoms of two 8-hydroxyquinolato ligands, forming a distorted octahedral environment (Table 1). The V=O bond distance is 1.602 (4) Å which is typical for oxovandium complexes (Hoshina et al., 1998; Otieno et al., 1996). The mean planes of the chelated rings defined by N1/C5—C6/O1/V1 and N2/C14—C15/O2/V1 form a dihedral angle of 82.02 (18)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2) which are, in turn, linked by weak C—H···π interactions into chains along the b axis.

Experimental

8-Hydroxyquinoline (1 mmol, 145.16 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of VOSO4.3H2O (1 mmol, 225.4 mg). The mixture was then stirred at 323 K for 4 h. The solution was held at room temperature for 15 days, whereupon brown needle crystals suitable for X-ray diffraction were obtained.

Refinement

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.96 Å, and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

[V(C9H6NO)2(CH3O)O]F(000) = 792
Mr = 386.27Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1311 reflections
a = 14.0405 (16) Åθ = 2.7–25.3°
b = 8.0019 (1) ŵ = 0.63 mm1
c = 15.5920 (18) ÅT = 298 K
β = 110.560 (1)°Needle, brown
V = 1640.2 (3) Å30.44 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2893 independent reflections
Radiation source: fine-focus sealed tube1378 reflections with I > 2σ(I)
graphiteRint = 0.102
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.768, Tmax = 0.900k = −9→6
7660 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1126P)2] where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.26796 (9)0.67329 (14)0.24257 (8)0.0458 (5)
N10.3527 (4)0.4493 (6)0.3065 (4)0.0403 (13)
N20.1379 (4)0.4855 (6)0.1896 (4)0.0446 (14)
O10.2435 (3)0.6607 (6)0.3552 (3)0.0536 (13)
O20.2803 (3)0.5922 (6)0.1345 (3)0.0479 (12)
O30.1746 (3)0.8276 (6)0.2010 (4)0.0592 (14)
O40.3700 (3)0.7827 (5)0.2732 (3)0.0522 (13)
C10.4069 (5)0.3432 (8)0.2784 (5)0.0504 (18)
H10.40350.35020.21780.060*
C20.4686 (5)0.2221 (9)0.3334 (6)0.059 (2)
H20.50430.14800.31000.071*
C30.4762 (5)0.2133 (8)0.4233 (6)0.058 (2)
H30.51890.13450.46180.069*
C40.4199 (5)0.3227 (8)0.4578 (5)0.0426 (16)
C50.3577 (5)0.4370 (7)0.3952 (4)0.0370 (15)
C60.2987 (5)0.5570 (8)0.4210 (5)0.0427 (17)
C70.3040 (5)0.5595 (9)0.5099 (4)0.0522 (19)
H70.26610.63660.52920.063*
C80.3665 (6)0.4458 (10)0.5716 (5)0.060 (2)
H80.36950.44980.63210.072*
C90.4238 (5)0.3288 (9)0.5485 (5)0.056 (2)
H90.46460.25490.59210.067*
C100.0644 (5)0.4382 (8)0.2193 (6)0.061 (2)
H100.06500.47820.27550.073*
C11−0.0131 (6)0.3317 (10)0.1701 (8)0.078 (3)
H11−0.06250.30050.19400.094*
C12−0.0177 (6)0.2729 (10)0.0881 (8)0.081 (3)
H12−0.07040.20230.05500.097*
C130.0588 (6)0.3196 (9)0.0526 (6)0.061 (2)
C140.1326 (5)0.4281 (8)0.1072 (5)0.0467 (18)
C150.2132 (5)0.4850 (8)0.0794 (5)0.0440 (17)
C160.2162 (6)0.4307 (9)−0.0033 (5)0.058 (2)
H160.26790.4669−0.02320.070*
C170.1425 (8)0.3222 (11)−0.0570 (6)0.078 (3)
H170.14580.2859−0.11250.094*
C180.0657 (7)0.2675 (9)−0.0307 (7)0.076 (3)
H180.01720.1948−0.06830.092*
C190.1912 (6)1.0013 (10)0.2138 (7)0.088 (3)
H19A0.16921.03850.26230.132*
H19B0.15341.05880.15820.132*
H19C0.26241.02460.22950.132*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0373 (7)0.0496 (8)0.0487 (8)0.0070 (6)0.0128 (6)0.0060 (6)
N10.031 (3)0.048 (3)0.045 (4)0.007 (3)0.017 (3)0.002 (3)
N20.034 (3)0.044 (3)0.057 (4)0.010 (3)0.018 (3)0.014 (3)
O10.046 (3)0.060 (3)0.056 (3)0.021 (2)0.020 (3)0.007 (3)
O20.035 (3)0.058 (3)0.050 (3)−0.002 (2)0.015 (2)0.008 (2)
O30.044 (3)0.060 (3)0.072 (4)0.012 (2)0.018 (3)0.014 (3)
O40.041 (3)0.050 (3)0.061 (3)−0.003 (2)0.012 (3)0.004 (2)
C10.051 (4)0.051 (4)0.055 (5)0.012 (4)0.027 (4)−0.001 (4)
C20.047 (5)0.054 (5)0.086 (7)0.013 (4)0.036 (5)−0.001 (4)
C30.042 (4)0.045 (4)0.081 (6)0.009 (3)0.016 (4)0.013 (4)
C40.033 (4)0.045 (4)0.048 (5)0.001 (3)0.010 (3)0.012 (4)
C50.027 (3)0.042 (4)0.043 (4)0.000 (3)0.013 (3)0.006 (3)
C60.028 (4)0.049 (4)0.048 (5)−0.001 (3)0.009 (3)−0.002 (4)
C70.049 (5)0.077 (5)0.034 (4)0.002 (4)0.019 (4)−0.005 (4)
C80.059 (5)0.084 (6)0.035 (4)−0.012 (5)0.014 (4)0.001 (4)
C90.038 (4)0.068 (5)0.052 (5)0.002 (4)0.006 (4)0.024 (4)
C100.040 (4)0.055 (5)0.098 (7)0.010 (4)0.037 (5)0.013 (5)
C110.043 (5)0.059 (6)0.139 (10)0.002 (4)0.039 (6)0.019 (6)
C120.033 (5)0.050 (5)0.135 (10)0.000 (4)−0.002 (6)0.018 (6)
C130.046 (5)0.053 (5)0.064 (6)0.004 (4)−0.006 (4)0.004 (4)
C140.039 (4)0.036 (4)0.057 (5)0.009 (3)0.006 (4)0.010 (4)
C150.032 (4)0.044 (4)0.048 (5)0.009 (3)0.004 (4)0.010 (4)
C160.056 (5)0.070 (5)0.047 (5)0.018 (4)0.017 (4)−0.002 (4)
C170.089 (7)0.069 (6)0.059 (6)0.013 (5)0.004 (6)−0.018 (5)
C180.071 (6)0.043 (5)0.077 (7)0.002 (4)−0.022 (5)0.001 (5)
C190.061 (6)0.072 (6)0.135 (9)0.015 (5)0.040 (6)0.016 (6)
C190.061 (6)0.072 (6)0.135 (9)0.015 (5)0.040 (6)0.016 (6)

Geometric parameters (Å, °)

V1—O41.602 (4)C7—C81.390 (9)
V1—O31.752 (5)C7—H70.9300
V1—O21.870 (5)C8—C91.363 (9)
V1—O11.907 (5)C8—H80.9300
V1—N12.188 (5)C9—H90.9300
V1—N22.284 (6)C10—C111.383 (11)
N1—C11.314 (7)C10—H100.9300
N1—C51.364 (7)C11—C121.341 (12)
N2—C101.326 (8)C11—H110.9300
N2—C141.342 (8)C12—C131.421 (12)
O1—C61.335 (7)C12—H120.9300
O2—C151.339 (8)C13—C141.390 (10)
O3—C191.412 (9)C13—C181.400 (12)
C1—C21.380 (9)C14—C151.422 (9)
C1—H10.9300C15—C161.375 (9)
C2—C31.369 (10)C16—C171.385 (11)
C2—H20.9300C16—H160.9300
C3—C41.408 (9)C17—C181.353 (12)
C3—H30.9300C17—H170.9300
C4—C91.397 (9)C18—H180.9300
C4—C51.397 (8)C19—H19A0.9600
C5—C61.416 (8)C19—H19B0.9600
C6—C71.362 (8)C19—H19C0.9600
O4—V1—O3101.5 (2)C6—C7—C8119.4 (7)
O4—V1—O295.9 (2)C6—C7—H7120.3
O3—V1—O2101.9 (2)C8—C7—H7120.3
O4—V1—O1100.7 (2)C9—C8—C7123.7 (7)
O3—V1—O191.4 (2)C9—C8—H8118.1
O2—V1—O1156.3 (2)C7—C8—H8118.1
O4—V1—N191.5 (2)C8—C9—C4118.3 (7)
O3—V1—N1164.3 (2)C8—C9—H9120.8
O2—V1—N185.35 (19)C4—C9—H9120.8
O1—V1—N177.40 (19)N2—C10—C11122.6 (8)
O4—V1—N2170.1 (2)N2—C10—H10118.7
O3—V1—N286.0 (2)C11—C10—H10118.7
O2—V1—N276.2 (2)C12—C11—C10120.8 (8)
O1—V1—N285.3 (2)C12—C11—H11119.6
N1—V1—N282.15 (19)C10—C11—H11119.6
C1—N1—C5117.5 (6)C11—C12—C13119.2 (8)
C1—N1—V1131.5 (5)C11—C12—H12120.4
C5—N1—V1110.4 (4)C13—C12—H12120.4
C10—N2—C14116.6 (6)C14—C13—C18118.4 (8)
C10—N2—V1133.1 (5)C14—C13—C12115.4 (8)
C14—N2—V1109.9 (4)C18—C13—C12126.2 (9)
C6—O1—V1119.8 (4)N2—C14—C13125.4 (7)
C15—O2—V1122.2 (4)N2—C14—C15113.6 (6)
C19—O3—V1125.2 (5)C13—C14—C15121.0 (8)
N1—C1—C2123.9 (7)O2—C15—C16123.9 (6)
N1—C1—H1118.1O2—C15—C14117.8 (6)
C2—C1—H1118.1C16—C15—C14118.3 (7)
C3—C2—C1118.6 (6)C15—C16—C17120.1 (8)
C3—C2—H2120.7C15—C16—H16119.9
C1—C2—H2120.7C17—C16—H16119.9
C2—C3—C4120.5 (7)C18—C17—C16121.7 (8)
C2—C3—H3119.7C18—C17—H17119.1
C4—C3—H3119.7C16—C17—H17119.1
C9—C4—C5118.5 (6)C17—C18—C13120.4 (8)
C9—C4—C3125.5 (7)C17—C18—H18119.8
C5—C4—C3115.9 (6)C13—C18—H18119.8
N1—C5—C4123.6 (6)O3—C19—H19A109.5
N1—C5—C6114.3 (6)O3—C19—H19B109.5
C4—C5—C6122.0 (6)H19A—C19—H19B109.5
O1—C6—C7125.6 (6)O3—C19—H19C109.5
O1—C6—C5116.3 (6)H19A—C19—H19C109.5
C7—C6—C5118.1 (6)H19B—C19—H19C109.5
O4—V1—N1—C1−80.2 (6)C9—C4—C5—N1175.8 (6)
O3—V1—N1—C1133.7 (9)C3—C4—C5—N1−2.3 (9)
O2—V1—N1—C115.5 (6)C9—C4—C5—C6−0.4 (9)
O1—V1—N1—C1179.1 (6)C3—C4—C5—C6−178.5 (6)
N2—V1—N1—C192.2 (6)V1—O1—C6—C7165.8 (5)
O4—V1—N1—C590.4 (4)V1—O1—C6—C5−12.9 (7)
O3—V1—N1—C5−55.8 (10)N1—C5—C6—O12.5 (8)
O2—V1—N1—C5−173.9 (4)C4—C5—C6—O1179.1 (5)
O1—V1—N1—C5−10.3 (4)N1—C5—C6—C7−176.3 (6)
N2—V1—N1—C5−97.2 (4)C4—C5—C6—C70.3 (9)
O3—V1—N2—C10−74.5 (6)O1—C6—C7—C8−178.6 (6)
O2—V1—N2—C10−177.7 (6)C5—C6—C7—C80.1 (10)
O1—V1—N2—C1017.3 (6)C6—C7—C8—C9−0.3 (11)
N1—V1—N2—C1095.2 (6)C7—C8—C9—C40.2 (11)
O3—V1—N2—C1497.8 (4)C5—C4—C9—C80.2 (10)
O2—V1—N2—C14−5.4 (4)C3—C4—C9—C8178.1 (6)
O1—V1—N2—C14−170.4 (4)C14—N2—C10—C111.6 (10)
N1—V1—N2—C14−92.5 (4)V1—N2—C10—C11173.5 (5)
O4—V1—O1—C6−76.6 (5)N2—C10—C11—C12−1.0 (12)
O3—V1—O1—C6−178.6 (5)C10—C11—C12—C130.8 (12)
O2—V1—O1—C656.9 (7)C11—C12—C13—C14−1.3 (11)
N1—V1—O1—C612.6 (4)C11—C12—C13—C18179.0 (8)
N2—V1—O1—C695.6 (5)C10—N2—C14—C13−2.3 (9)
O4—V1—O2—C15178.2 (5)V1—N2—C14—C13−176.0 (5)
O3—V1—O2—C15−78.7 (5)C10—N2—C14—C15179.5 (5)
O1—V1—O2—C1544.0 (7)V1—N2—C14—C155.8 (6)
N1—V1—O2—C1587.2 (5)C18—C13—C14—N2−178.1 (6)
N2—V1—O2—C154.1 (4)C12—C13—C14—N22.1 (10)
O4—V1—O3—C19−12.4 (7)C18—C13—C14—C150.0 (10)
O2—V1—O3—C19−111.0 (6)C12—C13—C14—C15−179.8 (6)
O1—V1—O3—C1988.8 (6)V1—O2—C15—C16175.9 (5)
N1—V1—O3—C19132.9 (8)V1—O2—C15—C14−2.3 (8)
N2—V1—O3—C19174.0 (6)N2—C14—C15—O2−3.1 (8)
C5—N1—C1—C2−0.5 (10)C13—C14—C15—O2178.6 (6)
V1—N1—C1—C2169.5 (5)N2—C14—C15—C16178.6 (6)
N1—C1—C2—C3−1.6 (11)C13—C14—C15—C160.3 (10)
C1—C2—C3—C41.8 (11)O2—C15—C16—C17−178.7 (6)
C2—C3—C4—C9−177.9 (7)C14—C15—C16—C17−0.5 (10)
C2—C3—C4—C50.0 (9)C15—C16—C17—C180.4 (12)
C1—N1—C5—C42.5 (9)C16—C17—C18—C13−0.1 (13)
V1—N1—C5—C4−169.6 (5)C14—C13—C18—C17−0.1 (11)
C1—N1—C5—C6179.0 (6)C12—C13—C18—C17179.6 (8)
V1—N1—C5—C66.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.932.543.355 (8)146
C19—H19B···Cgii0.962.843.520 (9)128

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2870).

References

  • Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev.104, 849–902. [PubMed]
  • Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813–1820.
  • Hoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishida, H. & Kojima, M. (1998). Inorg. Chem.37, 142–145. [PubMed]
  • Otieno, T., Bond, M. R., Mokry, L. M., Walter, R. B. & Carrano, C. J. (1996). J. Chem. Soc. Chem. Commun. pp. 37–38.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Thompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761–764. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography