PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2149.
Published online 2009 August 15. doi:  10.1107/S1600536809031225
PMCID: PMC2969981

Perillartine

Abstract

The chiral title compound [systematic name: 4-(1-methyl­vinyl)cyclo­hexene-1-carbaldehyde oxime], C10H15NO, crystallizes with two mol­ecules in the asymmetric unit, one of which shows disorder of its propenyl substituent over two sets of sites in a 50:50 ratio. In both mol­ecules, the six-membered carbaldehyde oxime ring adopts an approximate envelope conformation in which the C atom bearing the propenyl substituent represents the flap position. In both mol­ecules, the plane passing through the propenyl substituent is nearly perpendicular to the mean plane of the six-membered ring [dihedral angles = 84.6 (6) and 87.4 (3)°]. In the crystal, the two independent mol­ecules are linked by a pair O—H(...)N hydrogen bonds across a pseudo-inversion centre, generating a dimer. The unit cell of the known racemate of the title compound is similar to the cell found here, but with space group P An external file that holds a picture, illustration, etc.
Object name is e-65-o2149-efi1.jpg.

Related literature

Perillartine or perillartin [(S)-4-(prop-1-en-2-yl)cyclo­hex-1-ene carbaldehyde oxime], the oxime of perillaldehyde, is 2000 times sweeter than sucrose; see the handbook of artificial sweeteners by O’Brien Nabors & Gelardi (2001 [triangle]). For the crystal structure of the racemic compound, see: Hooft et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2149-scheme1.jpg

Experimental

Crystal data

  • C10H15NO
  • M r = 165.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2149-efi2.jpg
  • a = 7.2679 (6) Å
  • b = 8.1702 (7) Å
  • c = 8.9426 (8) Å
  • α = 105.150 (1)°
  • β = 95.658 (1)°
  • γ = 104.602 (1)°
  • V = 488.25 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.48 × 0.42 × 0.22 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: none
  • 4074 measured reflections
  • 2078 independent reflections
  • 1457 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.139
  • S = 1.07
  • 2078 reflections
  • 234 parameters
  • 21 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031225/hb5034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031225/hb5034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023), the NSF of Hunan Province (No. 09 J J3028) and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Hydroxylamine hydrochloride (3.15 g, 0.045 mol) in water (50 ml) was treated with sodium carbonate (2.12 g, 0.02 mol). To this solution was added perillaldehyde (4.50 g, 0.03 mol). The mixture was kept at 318 K for 2 h. The solution was cooled and the solid that formed was heated in water for another 2 h. This was repeated a second time. The product was recrystallized from ethyl acetate to yield colourless blocks of (I) (yield 5.5 g, 80%); m.p. 374–375 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.85±0.01 Å; their temperature factors were freely refined.

One of the propenyl groups is disordered over two positions; the disorder could not be refined, and was assumed to be a 1:1 type of disorder that involved only the terminal carbon atoms. The C–C single bond distance was restrained to 1.54±0.01 Å and the double bond distance to 1.35±0.01 Å. The displacement factors of the primed atoms were restrained to neqrly equal those of the umprimed ones, and the anisotropic displacement factors were restrained to be nearly isotropic.

Friedel pairs were merged. The configuration of the molecule was assumed to be that of the chiral starting reagent (i.e., S-configuration).

Figures

Fig. 1.
The molecular structure of (I) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.

Crystal data

C10H15NOZ = 2
Mr = 165.23F(000) = 180
Triclinic, P1Dx = 1.124 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2679 (6) ÅCell parameters from 1889 reflections
b = 8.1702 (7) Åθ = 2.4–26.9°
c = 8.9426 (8) ŵ = 0.07 mm1
α = 105.150 (1)°T = 293 K
β = 95.658 (1)°Block, colorless
γ = 104.602 (1)°0.48 × 0.42 × 0.22 mm
V = 488.25 (7) Å3

Data collection

Bruker SMART diffractometer1457 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
graphiteθmax = 27.1°, θmin = 2.4°
[var phi] and ω scansh = −9→9
4074 measured reflectionsk = −10→10
2078 independent reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0793P)2 + 0.0172P] where P = (Fo2 + 2Fc2)/3
2078 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.15 e Å3
21 restraintsΔρmin = −0.12 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.5000 (4)0.5002 (4)0.5001 (3)0.0885 (8)
O20.7482 (4)0.9157 (4)0.6717 (4)0.0922 (8)
N10.4289 (4)0.6405 (4)0.4831 (3)0.0724 (8)
N20.8170 (4)0.7770 (4)0.6971 (3)0.0727 (7)
C10.2564 (5)0.5857 (4)0.4097 (4)0.0699 (8)
H1A0.19320.46490.37750.084*
C20.1551 (5)0.7069 (4)0.3745 (4)0.0657 (8)
C3−0.0246 (5)0.6464 (4)0.2976 (4)0.0758 (9)
H3−0.08360.52510.27060.091*
C4−0.1401 (5)0.7574 (4)0.2510 (4)0.0776 (9)
H4A−0.23860.76430.31610.093*
H4B−0.20480.70100.14250.093*
C5−0.0167 (5)0.9448 (4)0.2672 (4)0.0760 (9)
H50.05720.93630.18090.091*
C60.1263 (6)1.0142 (4)0.4182 (6)0.0973 (13)
H6A0.05721.01760.50580.117*
H6B0.20131.13450.42910.117*
C70.2618 (6)0.9016 (5)0.4248 (5)0.0905 (12)
H7A0.35520.92370.35670.109*
H7B0.33200.93540.53140.109*
C8−0.1413 (5)1.0638 (4)0.2484 (4)0.0784 (10)0.50
C9−0.2394 (18)1.127 (2)0.3557 (11)0.088 (3)0.50
H9A−0.31341.19990.33660.105*0.50
H9B−0.23421.09940.45010.105*0.50
C10−0.1478 (19)1.1072 (18)0.0954 (12)0.093 (3)0.50
H10A−0.21241.00170.01070.139*0.50
H10B−0.01861.15410.07970.139*0.50
H10C−0.21671.19360.09790.139*0.50
C8'−0.1413 (5)1.0638 (4)0.2484 (4)0.0784 (10)0.50
C9'−0.1960 (17)1.0794 (19)0.1074 (12)0.088 (3)0.50
H9'A−0.27721.14870.09640.105*0.50
H9'B−0.15291.02100.02000.105*0.50
C10'−0.208 (2)1.157 (2)0.3937 (11)0.093 (3)0.50
H10D−0.27651.23500.36830.139*0.50
H10E−0.09811.22360.47470.139*0.50
H10F−0.29221.07020.43030.139*0.50
C110.9893 (5)0.8319 (4)0.7688 (4)0.0733 (9)
H111.05530.95180.79530.088*
C121.0866 (5)0.7107 (4)0.8108 (4)0.0644 (8)
C131.2696 (5)0.7692 (4)0.8782 (5)0.0781 (10)
H131.33070.88980.90170.094*
C141.3864 (5)0.6556 (4)0.9198 (5)0.0798 (10)
H14A1.40610.67631.03280.096*
H14B1.51210.68890.88990.096*
C151.2887 (4)0.4597 (4)0.8383 (4)0.0632 (7)
H151.29490.43910.72620.076*
C161.0754 (4)0.4179 (4)0.8527 (5)0.0746 (9)
H16A1.01340.29210.80530.090*
H16B1.06400.44750.96310.090*
C170.9742 (5)0.5210 (4)0.7724 (5)0.0763 (10)
H17A0.95230.46710.65940.092*
H17B0.84920.51370.80410.092*
C181.3935 (4)0.3442 (4)0.8964 (4)0.0666 (8)
C191.4889 (6)0.2566 (5)0.8038 (5)0.0813 (9)
H19A1.55480.18660.84010.098*
H19B1.49040.26460.70210.098*
C201.3869 (7)0.3355 (6)1.0597 (5)0.0934 (11)
H20A1.45000.25091.07860.140*
H20B1.25480.29981.07330.140*
H20C1.45160.45001.13280.140*
H10.599 (5)0.568 (5)0.568 (5)0.115 (18)*
H20.641 (4)0.866 (5)0.609 (5)0.110 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.096 (2)0.0817 (17)0.1005 (18)0.0444 (17)0.0085 (16)0.0344 (14)
O20.095 (2)0.0784 (16)0.114 (2)0.0444 (16)0.0000 (17)0.0349 (15)
N10.079 (2)0.0743 (18)0.0748 (16)0.0356 (16)0.0104 (15)0.0285 (14)
N20.0716 (19)0.0704 (17)0.0855 (18)0.0333 (15)0.0092 (15)0.0282 (14)
C10.078 (2)0.0649 (19)0.0689 (19)0.0273 (18)0.0089 (17)0.0181 (15)
C20.068 (2)0.0613 (18)0.0666 (18)0.0211 (15)0.0059 (15)0.0160 (14)
C30.071 (2)0.0540 (18)0.090 (2)0.0132 (17)−0.0072 (18)0.0111 (16)
C40.065 (2)0.0647 (19)0.090 (2)0.0149 (16)−0.0079 (17)0.0122 (17)
C50.0624 (19)0.072 (2)0.091 (2)0.0177 (15)0.0000 (16)0.0272 (17)
C60.082 (2)0.0569 (17)0.134 (3)0.0146 (16)−0.035 (2)0.0212 (19)
C70.071 (2)0.068 (2)0.119 (3)0.0139 (18)−0.021 (2)0.024 (2)
C80.064 (2)0.067 (2)0.100 (3)0.0135 (16)−0.0078 (17)0.0302 (18)
C90.097 (5)0.108 (6)0.076 (3)0.048 (4)0.020 (3)0.040 (3)
C100.103 (5)0.083 (4)0.093 (4)0.033 (4)0.002 (3)0.027 (3)
C8'0.064 (2)0.067 (2)0.100 (3)0.0135 (16)−0.0078 (17)0.0302 (18)
C9'0.097 (5)0.108 (6)0.076 (3)0.048 (4)0.020 (3)0.040 (3)
C10'0.103 (5)0.083 (4)0.093 (4)0.033 (4)0.002 (3)0.027 (3)
C110.075 (2)0.0609 (19)0.086 (2)0.0230 (18)0.0118 (18)0.0229 (16)
C120.063 (2)0.0578 (17)0.0732 (18)0.0205 (15)0.0092 (15)0.0195 (14)
C130.064 (2)0.0537 (18)0.107 (3)0.0101 (16)−0.0006 (18)0.0200 (17)
C140.057 (2)0.0608 (19)0.112 (3)0.0107 (16)−0.0085 (18)0.0231 (18)
C150.0576 (16)0.0601 (16)0.0705 (17)0.0166 (13)0.0037 (13)0.0203 (13)
C160.0581 (18)0.0659 (18)0.100 (2)0.0123 (15)0.0015 (16)0.0355 (18)
C170.056 (2)0.066 (2)0.105 (3)0.0164 (16)−0.0043 (17)0.0292 (18)
C180.0528 (17)0.0590 (18)0.082 (2)0.0124 (15)−0.0022 (14)0.0187 (15)
C190.080 (2)0.0733 (19)0.092 (2)0.0299 (18)0.0063 (18)0.0227 (17)
C200.094 (3)0.107 (3)0.095 (2)0.041 (2)0.010 (2)0.047 (2)

Geometric parameters (Å, °)

O1—N11.407 (3)C9'—H9'A0.9300
O1—H10.85 (4)C9'—H9'B0.9300
O2—N21.408 (3)C10'—H10D0.9600
O2—H20.85 (4)C10'—H10E0.9600
N1—C11.266 (4)C10'—H10F0.9600
N2—C111.261 (5)C11—C121.455 (4)
C1—C21.451 (4)C11—H110.9300
C1—H1A0.9300C12—C131.316 (5)
C2—C31.320 (5)C12—C171.489 (5)
C2—C71.506 (5)C13—C141.495 (4)
C3—C41.487 (4)C13—H130.9300
C3—H30.9300C14—C151.520 (4)
C4—C51.529 (5)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—C181.511 (4)
C5—C61.500 (5)C15—C161.527 (4)
C5—C81.514 (4)C15—H150.9800
C5—H50.9800C16—C171.514 (4)
C6—C71.515 (5)C16—H16A0.9700
C6—H6A0.9700C16—H16B0.9700
C6—H6B0.9700C17—H17A0.9700
C7—H7A0.9700C17—H17B0.9700
C7—H7B0.9700C18—C191.316 (5)
C8—C91.327 (8)C18—C201.485 (5)
C8—C101.500 (8)C19—H19A0.9300
C9—H9A0.9300C19—H19B0.9300
C9—H9B0.9300C20—H20A0.9600
C10—H10A0.9600C20—H20B0.9600
C10—H10B0.9600C20—H20C0.9600
C10—H10C0.9600
N1—O1—H194 (3)H10E—C10'—H10F109.5
N2—O2—H2106 (3)N2—C11—C12121.0 (3)
C1—N1—O1111.9 (3)N2—C11—H11119.5
C11—N2—O2112.1 (3)C12—C11—H11119.5
N1—C1—C2121.6 (3)C13—C12—C11120.0 (3)
N1—C1—H1A119.2C13—C12—C17121.9 (3)
C2—C1—H1A119.2C11—C12—C17118.0 (3)
C3—C2—C1120.4 (3)C12—C13—C14124.6 (3)
C3—C2—C7121.3 (3)C12—C13—H13117.7
C1—C2—C7118.3 (3)C14—C13—H13117.7
C2—C3—C4125.1 (3)C13—C14—C15112.1 (3)
C2—C3—H3117.5C13—C14—H14A109.2
C4—C3—H3117.5C15—C14—H14A109.2
C3—C4—C5112.7 (3)C13—C14—H14B109.2
C3—C4—H4A109.1C15—C14—H14B109.2
C5—C4—H4A109.1H14A—C14—H14B107.9
C3—C4—H4B109.1C18—C15—C14112.0 (2)
C5—C4—H4B109.1C18—C15—C16114.2 (2)
H4A—C4—H4B107.8C14—C15—C16108.9 (3)
C6—C5—C8114.0 (3)C18—C15—H15107.1
C6—C5—C4109.6 (3)C14—C15—H15107.1
C8—C5—C4111.3 (3)C16—C15—H15107.1
C6—C5—H5107.2C17—C16—C15111.1 (2)
C8—C5—H5107.2C17—C16—H16A109.4
C4—C5—H5107.2C15—C16—H16A109.4
C5—C6—C7112.3 (3)C17—C16—H16B109.4
C5—C6—H6A109.2C15—C16—H16B109.4
C7—C6—H6A109.2H16A—C16—H16B108.0
C5—C6—H6B109.2C12—C17—C16112.7 (3)
C7—C6—H6B109.2C12—C17—H17A109.0
H6A—C6—H6B107.9C16—C17—H17A109.0
C2—C7—C6111.9 (3)C12—C17—H17B109.0
C2—C7—H7A109.2C16—C17—H17B109.0
C6—C7—H7A109.2H17A—C17—H17B107.8
C2—C7—H7B109.2C19—C18—C20122.0 (3)
C6—C7—H7B109.2C19—C18—C15120.0 (3)
H7A—C7—H7B107.9C20—C18—C15118.0 (3)
C9—C8—C10120.8 (8)C18—C19—H19A120.0
C9—C8—C5124.4 (6)C18—C19—H19B120.0
C10—C8—C5114.7 (6)H19A—C19—H19B120.0
C8—C9—H9A120.0C18—C20—H20A109.5
C8—C9—H9B120.0C18—C20—H20B109.5
H9A—C9—H9B120.0H20A—C20—H20B109.5
H9'A—C9'—H9'B120.0C18—C20—H20C109.5
H10D—C10'—H10E109.5H20A—C20—H20C109.5
H10D—C10'—H10F109.5H20B—C20—H20C109.5
O1—N1—C1—C2−178.2 (3)O2—N2—C11—C12178.3 (3)
N1—C1—C2—C3179.9 (3)N2—C11—C12—C13176.4 (3)
N1—C1—C2—C71.2 (5)N2—C11—C12—C17−2.5 (5)
C1—C2—C3—C4−178.0 (3)C11—C12—C13—C14−177.1 (3)
C7—C2—C3—C40.7 (6)C17—C12—C13—C141.7 (6)
C2—C3—C4—C513.1 (5)C12—C13—C14—C1515.1 (6)
C3—C4—C5—C6−42.4 (4)C13—C14—C15—C18−172.6 (3)
C3—C4—C5—C8−169.4 (3)C13—C14—C15—C16−45.3 (4)
C8—C5—C6—C7−174.0 (4)C18—C15—C16—C17−172.3 (3)
C4—C5—C6—C760.5 (5)C14—C15—C16—C1761.8 (4)
C3—C2—C7—C615.8 (5)C13—C12—C17—C1613.8 (5)
C1—C2—C7—C6−165.5 (3)C11—C12—C17—C16−167.3 (3)
C5—C6—C7—C2−46.7 (5)C15—C16—C17—C12−45.5 (4)
C6—C5—C8—C9−51.0 (9)C14—C15—C18—C19−109.8 (4)
C4—C5—C8—C973.5 (8)C16—C15—C18—C19125.9 (3)
C6—C5—C8—C10129.0 (7)C14—C15—C18—C2069.4 (4)
C4—C5—C8—C10−106.4 (7)C16—C15—C18—C20−54.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (4)2.00 (2)2.831 (4)164 (5)
O2—H2···N10.85 (4)2.04 (2)2.811 (4)150 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5034).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hooft, R. W. W., van der Sluis, P., Kanters, J. A. & Kroon, J. (1990). Acta Cryst. C46, 1133–1135.
  • O’Brien Nabors, L. & Gelardi, R. C. (2001). Alternative Sweeteners, 3rd ed. Boca Raton: CRC Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography