PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1148.
Published online 2009 August 29. doi:  10.1107/S1600536809033662
PMCID: PMC2969976

Tetra­aqua­bis[2-(2,4-dichloro­phen­oxy)acetato]nickel(II)

Abstract

In the title complex, [Ni(C8H5Cl2O3)2(H2O)4], the NiII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-m1148-efi1.jpg) adopts a slightly distorted NiO6 octa­hedral coordination. An intra­molecular O—H(...)O hydrogen bond helps to establish the conformation. In the crystal, further O—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For background, see: Cheng et al. (2006 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1148-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H5Cl2O3)2(H2O)4]
  • M r = 570.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1148-efi2.jpg
  • a = 16.860 (3) Å
  • b = 8.1370 (16) Å
  • c = 8.3010 (17) Å
  • β = 95.87 (3)°
  • V = 1132.8 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.38 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.683, T max = 0.875
  • 2134 measured reflections
  • 1976 independent reflections
  • 1596 reflections with I > 2σ(I)
  • R int = 0.017
  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.214
  • S = 1.14
  • 1976 reflections
  • 154 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.86 e Å−3
  • Δρmin = −1.97 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033662/hb5064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033662/hb5064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

supplementary crystallographic information

Comment

There has been much research interest in acid metal complexes due to their molecular architectures and biological activities (e.g. Cheng et al., 2006). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The NiII atom is six-coordinated by two O atoms from the 2-(2,4-dichlorophenoxy)acetate and four O atoms from the water molecules, forming a slightly distorted octahedral coordination.

Experimental

A mixture of 2-(2,4-dichlorophenoxy)acetic acid (440 mg, 2 mmol) and NiCl2.6H2O (1 mmol, 236 mg) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, green blocks of (I) were formed.

Refinement

The water H atoms were located in a difference map and their positions were refined with the restraint O—H = 0.83 (1)Å. The other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1–x, –y, 1–z).

Crystal data

[Ni(C8H5Cl2O3)2(H2O)4]F(000) = 580
Mr = 570.81Dx = 1.673 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.860 (3) Åθ = 9–12°
b = 8.1370 (16) ŵ = 1.38 mm1
c = 8.3010 (17) ÅT = 293 K
β = 95.87 (3)°Block, green
V = 1132.8 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
graphiteθmax = 25.2°, θmin = 1.2°
ω/2θ scansh = −20→20
Absorption correction: ψ scan (North et al., 1968)k = −9→0
Tmin = 0.683, Tmax = 0.875l = 0→9
2134 measured reflections200 standard reflections every 3 reflections
1976 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.14w = 1/[σ2(Fo2) + (0.1181P)2 + 3.965P] where P = (Fo2 + 2Fc2)/3
1976 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.86 e Å3
6 restraintsΔρmin = −1.97 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1103 (4)0.1141 (9)0.3299 (9)0.0487 (17)
H10.08720.01600.35850.058*
C20.1780 (4)0.4056 (8)0.2486 (8)0.0363 (14)
C30.1822 (4)0.1110 (8)0.2642 (9)0.0454 (16)
H30.20760.01130.25040.054*
C40.0724 (4)0.2598 (9)0.3534 (9)0.0458 (16)
C50.1072 (4)0.4079 (8)0.3131 (8)0.0431 (15)
H50.08210.50720.33030.052*
C60.3693 (4)0.0240 (7)0.2247 (7)0.0296 (12)
C70.2173 (4)0.2580 (7)0.2183 (8)0.0345 (13)
C80.3201 (4)0.1188 (8)0.0942 (7)0.0388 (15)
H8A0.35330.14470.00880.047*
H8B0.27700.04890.04790.047*
Cl1−0.01949 (12)0.2621 (3)0.4316 (3)0.0626 (6)
Cl20.22352 (11)0.5880 (2)0.1988 (3)0.0557 (6)
H1A0.418 (3)−0.233 (12)0.523 (6)0.067*
H3A0.452 (4)−0.018 (10)0.785 (6)0.067*
H1B0.436 (4)−0.226 (11)0.366 (3)0.067*
H3B0.3858 (7)0.030 (11)0.687 (9)0.067*
Ni10.50000.00000.50000.0266 (4)
O10.4550 (3)−0.2430 (5)0.4624 (6)0.0406 (11)
O20.3738 (3)−0.1289 (5)0.2003 (5)0.0433 (11)
O30.4362 (3)0.0347 (7)0.6996 (6)0.0503 (12)
O40.4045 (2)0.0994 (5)0.3429 (5)0.0319 (9)
O60.2866 (3)0.2687 (6)0.1489 (6)0.0420 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.053 (4)0.039 (4)0.052 (4)−0.005 (3)−0.005 (3)−0.005 (3)
C20.038 (3)0.029 (3)0.041 (3)−0.008 (3)−0.002 (3)0.005 (3)
C30.048 (4)0.027 (3)0.059 (4)−0.002 (3)−0.009 (3)0.004 (3)
C40.049 (4)0.046 (4)0.040 (4)−0.006 (3)−0.006 (3)0.002 (3)
C50.049 (4)0.032 (3)0.047 (4)0.000 (3)0.000 (3)0.000 (3)
C60.039 (3)0.018 (3)0.032 (3)0.001 (2)0.006 (2)−0.002 (2)
C70.037 (3)0.029 (3)0.036 (3)0.004 (2)−0.004 (2)0.000 (2)
C80.046 (4)0.035 (3)0.034 (3)0.006 (3)−0.001 (3)−0.009 (3)
Cl10.0543 (11)0.0675 (13)0.0680 (13)−0.0061 (9)0.0147 (9)−0.0037 (10)
Cl20.0552 (11)0.0276 (8)0.0841 (14)0.0013 (7)0.0062 (9)0.0059 (8)
Ni10.0369 (6)0.0154 (5)0.0270 (6)0.0015 (4)0.0017 (4)0.0023 (4)
O10.058 (3)0.028 (2)0.035 (2)0.000 (2)−0.001 (2)−0.0015 (19)
O20.066 (3)0.031 (2)0.032 (2)−0.001 (2)−0.003 (2)−0.0056 (18)
O30.048 (3)0.054 (3)0.050 (3)0.009 (2)0.013 (2)0.007 (2)
O40.043 (2)0.0205 (19)0.030 (2)0.0092 (17)−0.0054 (17)−0.0048 (17)
O60.037 (2)0.032 (2)0.056 (3)0.0010 (18)−0.002 (2)0.004 (2)

Geometric parameters (Å, °)

C1—C41.369 (10)C7—O61.358 (8)
C1—C31.381 (11)C8—O61.437 (7)
C1—H10.9300C8—H8A0.9700
C2—C51.358 (10)C8—H8B0.9700
C2—C71.407 (9)Ni1—O32.085 (5)
C2—Cl21.740 (6)Ni1—O3i2.085 (5)
C3—C71.403 (9)Ni1—O42.126 (4)
C3—H30.9300Ni1—O4i2.126 (4)
C4—C51.396 (10)Ni1—O1i2.130 (4)
C4—Cl11.741 (8)Ni1—O12.130 (4)
C5—H50.9300O1—H1A0.841 (10)
C6—O41.253 (7)O1—H1B0.840 (10)
C6—O21.265 (7)O3—H3A0.844 (10)
C6—C81.508 (8)O3—H3B0.847 (10)
C4—C1—C3120.9 (7)C6—C8—H8B108.7
C4—C1—H1119.6H8A—C8—H8B107.6
C3—C1—H1119.6O3—Ni1—O3i180.0
C5—C2—C7122.1 (6)O3—Ni1—O490.93 (19)
C5—C2—Cl2120.6 (5)O3i—Ni1—O489.07 (18)
C7—C2—Cl2117.3 (5)O3—Ni1—O4i89.07 (18)
C1—C3—C7120.2 (6)O3i—Ni1—O4i90.93 (18)
C1—C3—H3119.9O4—Ni1—O4i180.0
C7—C3—H3119.9O3—Ni1—O1i87.9 (2)
C1—C4—C5120.0 (7)O3i—Ni1—O1i92.1 (2)
C1—C4—Cl1120.5 (6)O4—Ni1—O1i88.46 (16)
C5—C4—Cl1119.5 (6)O4i—Ni1—O1i91.54 (16)
C2—C5—C4119.4 (6)O3—Ni1—O192.1 (2)
C2—C5—H5120.3O3i—Ni1—O187.9 (2)
C4—C5—H5120.3O4—Ni1—O191.54 (16)
O4—C6—O2125.2 (5)O4i—Ni1—O188.46 (16)
O4—C6—C8119.6 (5)O1i—Ni1—O1180.0
O2—C6—C8115.2 (5)Ni1—O1—H1A96 (7)
O6—C7—C3125.1 (6)Ni1—O1—H1B94 (6)
O6—C7—C2117.5 (5)H1A—O1—H1B108.9 (18)
C3—C7—C2117.4 (6)Ni1—O3—H3A117 (6)
O6—C8—C6114.4 (5)Ni1—O3—H3B119 (6)
O6—C8—H8A108.7H3A—O3—H3B108.4 (18)
C6—C8—H8A108.7C6—O4—Ni1124.2 (4)
O6—C8—H8B108.7C7—O6—C8117.5 (5)
C4—C1—C3—C7−0.9 (11)O4—C6—C8—O6−28.4 (8)
C3—C1—C4—C5−1.0 (11)O2—C6—C8—O6154.2 (6)
C3—C1—C4—Cl1178.4 (5)O2—C6—O4—Ni114.9 (9)
C7—C2—C5—C41.0 (10)C8—C6—O4—Ni1−162.2 (4)
Cl2—C2—C5—C4−179.3 (5)O3—Ni1—O4—C6−122.0 (5)
C1—C4—C5—C20.9 (10)O3i—Ni1—O4—C658.0 (5)
Cl1—C4—C5—C2−178.5 (5)O4i—Ni1—O4—C676 (100)
C1—C3—C7—O6−178.2 (6)O1i—Ni1—O4—C6150.1 (5)
C1—C3—C7—C22.7 (10)O1—Ni1—O4—C6−29.9 (5)
C5—C2—C7—O6178.0 (6)C3—C7—O6—C810.6 (9)
Cl2—C2—C7—O6−1.6 (8)C2—C7—O6—C8−170.3 (5)
C5—C2—C7—C3−2.8 (10)C6—C8—O6—C7−83.3 (7)
Cl2—C2—C7—C3177.5 (5)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O2ii0.84 (5)2.05 (7)2.723 (7)136 (8)
O1—H1B···O20.84 (3)1.82 (5)2.619 (7)157 (7)
O3—H3A···O1ii0.85 (6)2.44 (7)3.217 (7)153 (7)
O3—H3B···O6iii0.85 (2)2.34 (6)2.980 (7)133 (8)

Symmetry codes: (ii) x, −y−1/2, z+1/2; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5064).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Cheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem.632, 2326–2330.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography