PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2245.
Published online 2009 August 26. doi:  10.1107/S1600536809033303
PMCID: PMC2969964

2-Bromo-1-(4-methoxy­phen­yl)ethanone

Abstract

The title compound, C9H9BrO2, prepared by the reaction of 4-methoxy­acetophenone and cupric bromide, , is approximately planar (r.m.s. deviation 0.0008 Å). In the crystal, weak inter­molecular aromatic C—H(...)Ocarbon­yl hydrogen-bonding inter­actions result in a one-dimensional chain structure.

Related literature

For background to hydrazone compounds, see: Domiano et al. (1984 [triangle]); Li et al. (1988 [triangle]); Sadik et al. (2004 [triangle]). For background to thia­zole compounds, see: Shinagawa et al. (1997 [triangle]); Shivarama et al.(2003 [triangle]); Dinçer et al. (2005 [triangle]); Zhang et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2245-scheme1.jpg

Experimental

Crystal data

  • C9H9BrO2
  • M r = 229.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2245-efi1.jpg
  • a = 7.7360 (15) Å
  • b = 12.441 (3) Å
  • c = 10.048 (2) Å
  • β = 111.42 (3)°
  • V = 900.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.52 mm−1
  • T = 305 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.465, T max = 0.661
  • 1634 measured reflections
  • 1634 independent reflections
  • 924 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.116
  • S = 1.01
  • 1634 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033303/zs2006sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033303/zs2006Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The chemistry of hydrazones, owing to their coordinating capability, pharmacological activity, antibacterial and antifungal properties, and their use in analytical chemistry as highly selective extractants, has been intensively investigated (Domiano et al., 1984; Li et al., 1988; Sadık et al., 2004). In addition, many thiazole compounds are of considerable importance because of their antibacterial and anti-inflammatory activity (Shinagawa et al., 1997; Shivarama et al., 2003; Dinçer et al., 2005). We have focused our synthetic and structural studies on new derivatives of thiazole-substituted hydrazones (Zhang et al., 2009). We report here the crystal structure of a bromo-substituted methoxyacetophenone, the title compound C9H9BrO2 (I), which is a very important intermediate for the synthesis of thiazole-substituted hydrazones.

In (I), all bond lengths are within normal ranges (Allen et al., 1987). The presence of a strong intramolecular aromatic C8–H···O1carbonyl hydrogen bond (Table 1) forms a pseudo five-membered ring [O1/C2/C3/C8/H8A with an r.m.s. deviation 0.0069 Å], maintaining essential coplanarity of the ketone side chain with the benzene ring (Fig. 1) [torsion angle: C1–C2–C3–C8, -178.0 (5)°]. The methoxy group is similarly essentially coplanar [torsion angle: C5–C6–O2–C9, 172.0 (6)°].

The molecules of (I) associate through weak intermolecular aromatic C—H···Ocarbonyl hydrogen bonds forming one-dimensional chains which extend along the b axial direction in the unit cell (Fig.2).

Experimental

4-Methoxyacetophenone (1.50 g, 0.01 mol) was dissolved in 50 ml ethyl acetate, cupric bromide (3.36 g, 0.015 mol) was added and the mixture was refluxed for ca. 3 h. On cooling, the solid which separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (CDCl3, δ, p.p.m.) 8.17 (d, 2 H), 7.49 (d, 2 H), 4.5 (s, 2 H), 3.81 (s,3 H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene and aromatic H atoms.

Figures

Fig. 1.
A view of the molecular structure of (I) showing the atom-numbering scheme with non-H atoms drawn as 30% displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing of (I) showing hydrogen bonds as dashed lines.

Crystal data

C9H9BrO2F(000) = 456
Mr = 229.06Dx = 1.690 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 7.7360 (15) Åθ = 1–25°
b = 12.441 (3) ŵ = 4.52 mm1
c = 10.048 (2) ÅT = 305 K
β = 111.42 (3)°Block, colorless
V = 900.3 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 2.7°
ω/2θ scansh = −9→8
Absorption correction: ψ scan (North et al., 1968)k = 0→14
Tmin = 0.465, Tmax = 0.661l = 0→12
1634 measured reflections3 standard reflections every 200 reflections
1634 independent reflections intensity decay: 9%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.20597 (10)0.66539 (6)0.07859 (7)0.0717 (3)
O10.3621 (7)0.8754 (4)0.2083 (5)0.0848 (15)
C10.1809 (8)0.8016 (5)−0.0164 (6)0.0576 (17)
H1A0.23080.7957−0.09180.069*
H1B0.05000.8190−0.06080.069*
O20.2187 (6)1.3075 (4)−0.1487 (5)0.0689 (13)
C20.2781 (8)0.8917 (5)0.0820 (6)0.0534 (16)
C30.2657 (7)0.9994 (5)0.0181 (6)0.0478 (14)
C40.1597 (8)1.0221 (5)−0.1242 (6)0.0593 (17)
H4A0.09570.9671−0.18490.071*
C50.1493 (9)1.1250 (5)−0.1751 (7)0.0633 (18)
H5A0.07801.1390−0.27030.076*
C60.2432 (8)1.2086 (5)−0.0870 (7)0.0538 (16)
C70.3497 (8)1.1859 (5)0.0560 (7)0.0600 (17)
H7A0.41381.24060.11720.072*
C80.3586 (8)1.0831 (5)0.1051 (6)0.0564 (16)
H8A0.42971.06880.20030.068*
C90.2906 (10)1.3980 (6)−0.0610 (8)0.083 (2)
H9A0.26251.4618−0.11860.124*
H9B0.42271.3908−0.01510.124*
H9C0.23531.40280.01020.124*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0721 (5)0.0588 (5)0.0722 (5)0.0064 (4)0.0121 (3)0.0076 (4)
O10.104 (4)0.067 (3)0.050 (3)0.002 (3)−0.011 (3)0.003 (2)
C10.054 (4)0.060 (4)0.050 (3)0.002 (3)0.008 (3)−0.003 (3)
O20.079 (3)0.054 (3)0.070 (3)−0.007 (2)0.021 (2)−0.002 (2)
C20.042 (3)0.060 (4)0.049 (4)0.007 (3)0.006 (3)−0.005 (3)
C30.036 (3)0.050 (4)0.053 (4)−0.001 (3)0.011 (3)−0.003 (3)
C40.060 (4)0.056 (4)0.049 (3)−0.002 (3)0.005 (3)−0.012 (3)
C50.067 (4)0.059 (4)0.052 (4)0.005 (4)0.007 (3)0.000 (3)
C60.047 (4)0.056 (4)0.058 (4)−0.004 (3)0.018 (3)−0.007 (3)
C70.054 (4)0.062 (5)0.058 (4)−0.011 (3)0.013 (3)−0.010 (3)
C80.044 (4)0.064 (4)0.049 (3)−0.004 (3)0.001 (3)−0.005 (3)
C90.087 (5)0.063 (5)0.096 (5)−0.012 (4)0.031 (4)−0.004 (4)

Geometric parameters (Å, °)

Br—C11.920 (6)C4—H4A0.9300
O1—C21.213 (6)C5—C61.387 (8)
C1—C21.502 (8)C5—H5A0.9300
C1—H1A0.9700C6—C71.400 (8)
C1—H1B0.9700C7—C81.363 (8)
O2—C61.359 (7)C7—H7A0.9300
O2—C91.412 (8)C8—H8A0.9300
C2—C31.474 (8)C9—H9A0.9600
C3—C81.380 (7)C9—H9B0.9600
C3—C41.393 (8)C9—H9C0.9600
C4—C51.370 (8)
C2—C1—Br113.3 (4)C4—C5—H5A119.4
C2—C1—H1A108.9C6—C5—H5A119.4
Br—C1—H1A108.9O2—C6—C5115.8 (5)
C2—C1—H1B108.9O2—C6—C7125.6 (6)
Br—C1—H1B108.9C5—C6—C7118.6 (6)
H1A—C1—H1B107.7C8—C7—C6119.6 (6)
C6—O2—C9118.7 (5)C8—C7—H7A120.2
O1—C2—C3122.1 (6)C6—C7—H7A120.2
O1—C2—C1120.8 (6)C7—C8—C3122.2 (6)
C3—C2—C1117.0 (5)C7—C8—H8A118.9
C8—C3—C4118.2 (6)C3—C8—H8A118.9
C8—C3—C2118.3 (5)O2—C9—H9A109.5
C4—C3—C2123.4 (6)O2—C9—H9B109.5
C5—C4—C3120.3 (6)H9A—C9—H9B109.5
C5—C4—H4A119.9O2—C9—H9C109.5
C3—C4—H4A119.9H9A—C9—H9C109.5
C4—C5—C6121.2 (6)H9B—C9—H9C109.5
Br—C1—C2—O10.0 (8)C9—O2—C6—C5172.0 (6)
Br—C1—C2—C3−179.8 (4)C9—O2—C6—C7−6.3 (9)
O1—C2—C3—C82.2 (9)C4—C5—C6—O2−178.5 (6)
C1—C2—C3—C8−178.0 (5)C4—C5—C6—C70.0 (9)
O1—C2—C3—C4−175.3 (6)O2—C6—C7—C8178.3 (6)
C1—C2—C3—C44.5 (9)C5—C6—C7—C80.0 (9)
C8—C3—C4—C50.1 (9)C6—C7—C8—C30.0 (9)
C2—C3—C4—C5177.6 (6)C4—C3—C8—C7−0.1 (9)
C3—C4—C5—C60.0 (10)C2—C3—C8—C7−177.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.932.472.780 (8)100
C7—H7A···O1i0.932.583.505 (7)171

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2006).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Dinçer, M., Özdemir, N., Çukurovalı, A. & Yılmaz, İ. (2005). Acta Cryst. E61, o1712-o1714.
  • Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem.18, 657–665.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889-o891.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shinagawa, H., Yamaga, H., Houchigai, H., Sumita, Y. & Sunagawa, M. (1997). Bioorg. Med. Chem.5, 601–621. [PubMed]
  • Shivarama, H. B., Malini, K. V., Sooryanarayana, R. B., Sarojini, B. K. & Suchetha, K. N. (2003). Eur. J. Med. Chem.38, 313–318. [PubMed]
  • Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography