PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2279–o2280.
Published online 2009 August 29. doi:  10.1107/S1600536809033972
PMCID: PMC2969961

N-(2-Chloro­phen­yl)-4-hydr­oxy-2H-1,2-benzothia­zine-3-carboxamide 1,1-dioxide

Abstract

In the title compound, C15H11ClN2O4S, there are two independent mol­ecules in the asymmetric unit, in which the heterocyclic thia­zine rings in both mol­ecules adopt half-chair conformations. The conformations about the C—C and C—N bonds in the central C—C—N—C chain in both mol­ecules are all EZ. There are strong intra­molecular O—H(...)O and N—H(...)N hydrogen bonds resulting in graph-set patterns S(6) and S(5) for the oxo and amino rings, in addition to intra­molecular N—H(...)Cl inter­actions. In the crystal structure, mol­ecules are linked by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds into chains along [100].

Related literature

For details of the synthesis, see: Siddiqui et al. (2008 [triangle]). For background to benzothia­zine carboxamide derivatives as analgesic and anti-inflammatory agents, see: Myung et al. (2002 [triangle]); Shin et al. (2000 [triangle]); Banerjee & Sarkar (2002 [triangle]). For related structures, see: Siddiqui et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]). Allen et al. (1987 [triangle]). For hydrogen-bond patterns and graph sets, see: Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2279-scheme1.jpg

Experimental

Crystal data

  • C15H11ClN2O4S
  • M r = 350.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2279-efi1.jpg
  • a = 10.077 (2) Å
  • b = 13.818 (3) Å
  • c = 21.426 (4) Å
  • β = 97.070 (13)°
  • V = 2960.8 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 200 K
  • 0.16 × 0.14 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.936, T max = 0.951
  • 12965 measured reflections
  • 6732 independent reflections
  • 5711 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.101
  • S = 1.05
  • 6732 reflections
  • 433 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033972/lh2886sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033972/lh2886Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzothiazine carboxamide derivatives are important due to their role as analgesic and anti-inflammatory agents (Myung et al., 2002). These compounds belong to the oxicam class of non-steroidal anti-inflammatory drugs (NSAIDs) and are free from steroidal side-effects. However, these are ulcerogenic in behavior to varying degrees (Shin et al., 2000). Besides great therapeutic potential, these compounds are very motivating polyfunctional heterocycles by virtue of their dynamic structural features (Banerjee & Sarkar, 2002). The search for more effective anti-inflammatory agents has led us to the synthesis of new agents using readily available starting material following facile routes to yield several products (Siddiqui et al., 2006; Siddiqui et al., 2007). In continuation of this program, we required the title compound, (I), to act as a nucleus for a variety of biologically active 1,2-benzothiazine-1,1-dioxide derivatives. Herein, we report the crystal structure of the title compound.

There are two molecules and in the asymmetric unit of the title compound (Fig. 1); the molecules containing S1 and S2 are referred to as molecules A and B, respectively. The bond lengths and bond angles in both molecules of (I) are within normal ranges (Allen et al., 1987) and agree well with the corresponding bond lengths and bond angles of its N-methyl analogues (Siddiqui et al., 2008).

The heterocyclic thiazine rings in both molecules of (I) adopt half-chair conformations wherein S1 and N1 are displaced by 0.439 (4) and -0.291 (3) Å, respectively, from the plane defined by C5/C6/C7/C8 atoms in molecule A and S2 and N3 displaced by -0.463 (4) and 0.284 (4) Å, respectively, from the plane defined by C20/C21/C22/C23 atoms in the molecule B. The puckering parameters (Cremer & Pople, 1975) in molecules A and B are: Q = 0.477 (2) and 0.489 (2) Å, θ = 118.2 (2) and 117.7 (2)° and [var phi] = 203.8 (3) and 202.9 (3)°, respectively. Similar conformations of the thiazine ring have been reported in the structures related to (I) (Siddiqui et al., 2008).

The conformations about the bonds C8–C9 and C9–N2 in molecule A and the bonds C23–C24 and C24–N4 in molecule B are all EZ, as determined by the strong intramolecular hydrogen bonds O3–H3O···O4 and N2–H2N···N1 in molecule A and O7–H7O···O8 and N4—H4N···N3 in molecule B resulting in graph set patterns S(6) and S(5) for the oxo and amino rings, respectively (Bernstein et al., 1994). The intramolecular hydrogen bonds of the types N–H···Cl and C–H···O are also present in both molecules which represent S(5) and S(6) motifs, respectively. The structure is stabilized by intermolecular hydrogen bonds of the types O–H···O and N–H···O (details of H-bonding geometry have been provided in Table 1 and depicted in Fig. 2). The central atoms N2/O4/C8/C9/C10 in molecule A and N4/O8/C23/C24/C25 in molecule B are individually planar with maximum deviations of atoms from the planes being 0.0086 (16) and 0.0127 (14) Å for C9 and N4, respectively.

Experimental

The method of preparation of the title compound has already been reported (Siddiqui et al., 2006; Siddiqui et al., 2007). Crystal of (I) suitable for X-ray crystallographic study were obtained by slow evaporation of its methanol solution at 313 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 and 0.99 Å and N–H distance = 0.88 Å with Uiso(H) = 1.2Ueq(C/N). The final difference map was free of any chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of molecules A and B in the asymmetric unit of (I) with displacement ellipsoids plotted at 50% probability level; intramolecular interactions have been drawn with dashed lines.
Fig. 2.
Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines.

Crystal data

C15H11ClN2O4SF(000) = 1440
Mr = 350.77Dx = 1.574 Mg m3
Monoclinic, P21/cMelting point = 491–492 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.077 (2) ÅCell parameters from 12965 reflections
b = 13.818 (3) Åθ = 2.8–27.5°
c = 21.426 (4) ŵ = 0.42 mm1
β = 97.070 (13)°T = 200 K
V = 2960.8 (10) Å3Block, colorless
Z = 80.16 × 0.14 × 0.12 mm

Data collection

Nonius KappaCCD diffractometer6732 independent reflections
Radiation source: fine-focus sealed tube5711 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −13→13
Tmin = 0.936, Tmax = 0.951k = −17→17
12965 measured reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.032P)2 + 2.78P] where P = (Fo2 + 2Fc2)/3
6732 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.53894 (6)0.85003 (4)0.44704 (3)0.03897 (14)
Cl21.01898 (6)0.42658 (4)0.72988 (3)0.03888 (14)
S10.56632 (5)0.56337 (4)0.29991 (2)0.02616 (11)
S20.88023 (5)0.18009 (4)0.55861 (2)0.02725 (12)
O10.42471 (14)0.56870 (11)0.28299 (7)0.0345 (3)
O20.65098 (16)0.63267 (11)0.27504 (7)0.0376 (4)
O30.91579 (14)0.44058 (11)0.40450 (7)0.0306 (3)
H3O0.942 (3)0.475 (2)0.4358 (13)0.046*
O40.90157 (13)0.58281 (10)0.48371 (7)0.0299 (3)
O51.01519 (15)0.14585 (11)0.56604 (8)0.0394 (4)
O60.79336 (16)0.15325 (11)0.60351 (7)0.0361 (3)
O70.55675 (14)0.35003 (11)0.46691 (7)0.0316 (3)
H7O0.552 (3)0.405 (2)0.4885 (13)0.047*
O80.62498 (14)0.48103 (10)0.55245 (6)0.0285 (3)
N10.59401 (16)0.56899 (12)0.37671 (8)0.0246 (3)
H1N0.527 (2)0.5434 (17)0.3934 (11)0.030*
N20.72054 (17)0.68431 (12)0.46688 (8)0.0273 (4)
H2N0.653 (2)0.6924 (17)0.4419 (11)0.033*
N30.88570 (16)0.29841 (12)0.55636 (8)0.0256 (3)
H3N0.956 (2)0.3194 (17)0.5386 (11)0.031*
N40.81507 (17)0.45318 (12)0.62112 (8)0.0259 (3)
H4N0.881 (2)0.4116 (17)0.6302 (11)0.031*
C10.7962 (2)0.32702 (15)0.30815 (10)0.0331 (5)
H10.87370.30340.33330.040*
C20.7414 (2)0.27512 (17)0.25567 (11)0.0384 (5)
H20.78170.21610.24520.046*
C30.6289 (2)0.30844 (17)0.21865 (10)0.0380 (5)
H30.59120.27160.18340.046*
C40.5707 (2)0.39514 (16)0.23257 (10)0.0339 (5)
H40.49370.41850.20690.041*
C50.6264 (2)0.44760 (14)0.28448 (9)0.0255 (4)
C60.73784 (19)0.41364 (14)0.32404 (9)0.0248 (4)
C70.79336 (18)0.46879 (14)0.38005 (8)0.0227 (4)
C80.72638 (18)0.54292 (14)0.40405 (9)0.0235 (4)
C90.78939 (19)0.60425 (14)0.45506 (9)0.0235 (4)
C100.75144 (19)0.75747 (14)0.51204 (9)0.0256 (4)
C110.6697 (2)0.83982 (15)0.50801 (10)0.0298 (4)
C120.6902 (2)0.91379 (16)0.55174 (11)0.0391 (5)
H120.63310.96870.54860.047*
C130.7943 (3)0.90723 (17)0.60010 (11)0.0411 (5)
H130.80910.95750.63040.049*
C140.8764 (2)0.82715 (17)0.60399 (11)0.0391 (5)
H140.94870.82330.63690.047*
C150.8559 (2)0.75196 (16)0.56085 (10)0.0326 (5)
H150.91290.69700.56470.039*
C160.6273 (2)0.19136 (17)0.39968 (10)0.0375 (5)
H160.55810.23270.38110.045*
C170.6553 (3)0.10598 (19)0.36988 (11)0.0454 (6)
H170.60510.08940.33090.054*
C180.7550 (3)0.04472 (18)0.39617 (11)0.0430 (6)
H180.7738−0.01310.37490.052*
C190.8279 (2)0.06714 (16)0.45352 (11)0.0361 (5)
H190.89570.02470.47220.043*
C200.7998 (2)0.15269 (14)0.48302 (9)0.0266 (4)
C210.7005 (2)0.21657 (14)0.45671 (9)0.0259 (4)
C220.67419 (19)0.30822 (14)0.48818 (9)0.0244 (4)
C230.76116 (18)0.34608 (14)0.53550 (9)0.0233 (4)
C240.72824 (18)0.43260 (14)0.57014 (9)0.0239 (4)
C250.81369 (19)0.52796 (14)0.66608 (9)0.0260 (4)
C260.9062 (2)0.52284 (15)0.72014 (9)0.0300 (4)
C270.9109 (2)0.59287 (18)0.76655 (10)0.0398 (5)
H270.97470.58830.80300.048*
C280.8223 (3)0.66939 (18)0.75945 (11)0.0430 (6)
H280.82410.71740.79130.052*
C290.7307 (2)0.67612 (16)0.70588 (12)0.0403 (5)
H290.67050.72930.70110.048*
C300.7255 (2)0.60632 (15)0.65903 (10)0.0331 (5)
H300.66250.61180.62240.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0360 (3)0.0319 (3)0.0464 (3)0.0097 (2)−0.0055 (2)0.0013 (2)
Cl20.0392 (3)0.0409 (3)0.0342 (3)0.0065 (2)−0.0048 (2)0.0003 (2)
S10.0264 (2)0.0246 (2)0.0261 (2)0.00015 (19)−0.00253 (18)0.00546 (19)
S20.0291 (3)0.0255 (2)0.0263 (2)0.00761 (19)−0.00002 (18)−0.00181 (19)
O10.0272 (8)0.0375 (8)0.0357 (8)0.0038 (6)−0.0079 (6)0.0052 (7)
O20.0430 (9)0.0289 (8)0.0412 (8)−0.0027 (7)0.0064 (7)0.0130 (7)
O30.0240 (7)0.0338 (8)0.0318 (7)0.0074 (6)−0.0048 (6)−0.0051 (6)
O40.0238 (7)0.0311 (8)0.0325 (7)0.0060 (6)−0.0054 (6)−0.0056 (6)
O50.0329 (8)0.0378 (9)0.0453 (9)0.0164 (7)−0.0044 (7)−0.0066 (7)
O60.0456 (9)0.0340 (8)0.0293 (7)0.0036 (7)0.0066 (6)0.0025 (6)
O70.0269 (7)0.0305 (8)0.0350 (8)0.0057 (6)−0.0059 (6)−0.0003 (6)
O80.0247 (7)0.0279 (7)0.0320 (7)0.0065 (6)0.0004 (5)−0.0014 (6)
N10.0208 (8)0.0267 (8)0.0255 (8)0.0011 (6)−0.0004 (6)0.0007 (7)
N20.0253 (9)0.0258 (8)0.0289 (8)0.0041 (7)−0.0037 (7)−0.0022 (7)
N30.0201 (8)0.0247 (8)0.0312 (8)0.0039 (6)−0.0005 (6)−0.0031 (7)
N40.0227 (8)0.0243 (8)0.0299 (8)0.0043 (7)0.0001 (6)−0.0042 (7)
C10.0342 (11)0.0307 (11)0.0338 (11)0.0055 (9)0.0019 (8)−0.0029 (9)
C20.0466 (14)0.0315 (11)0.0373 (11)0.0017 (10)0.0057 (10)−0.0073 (9)
C30.0478 (14)0.0359 (12)0.0296 (10)−0.0062 (10)0.0019 (9)−0.0079 (9)
C40.0372 (12)0.0353 (11)0.0272 (10)−0.0038 (9)−0.0034 (8)0.0015 (9)
C50.0280 (10)0.0247 (9)0.0234 (9)−0.0016 (8)0.0013 (7)0.0035 (7)
C60.0243 (9)0.0251 (9)0.0248 (9)−0.0014 (7)0.0026 (7)0.0013 (7)
C70.0196 (9)0.0245 (9)0.0233 (9)0.0008 (7)0.0004 (7)0.0028 (7)
C80.0190 (9)0.0257 (9)0.0249 (9)0.0006 (7)−0.0008 (7)0.0014 (7)
C90.0225 (9)0.0230 (9)0.0244 (9)0.0000 (7)0.0015 (7)0.0015 (7)
C100.0273 (10)0.0226 (9)0.0271 (9)−0.0005 (8)0.0042 (7)−0.0007 (8)
C110.0305 (11)0.0269 (10)0.0317 (10)0.0022 (8)0.0029 (8)0.0022 (8)
C120.0465 (14)0.0245 (10)0.0466 (13)0.0066 (9)0.0069 (10)−0.0024 (9)
C130.0544 (15)0.0286 (11)0.0394 (12)−0.0002 (10)0.0021 (10)−0.0090 (10)
C140.0455 (13)0.0371 (12)0.0325 (11)0.0003 (10)−0.0038 (9)−0.0065 (9)
C150.0351 (11)0.0295 (11)0.0321 (10)0.0052 (9)−0.0007 (8)−0.0028 (9)
C160.0458 (13)0.0359 (12)0.0283 (10)−0.0002 (10)−0.0051 (9)−0.0002 (9)
C170.0616 (16)0.0451 (14)0.0274 (11)−0.0086 (12)−0.0032 (10)−0.0099 (10)
C180.0577 (16)0.0365 (12)0.0356 (12)−0.0025 (11)0.0093 (11)−0.0143 (10)
C190.0377 (12)0.0326 (11)0.0388 (12)0.0040 (9)0.0077 (9)−0.0066 (9)
C200.0283 (10)0.0269 (10)0.0247 (9)0.0014 (8)0.0040 (7)−0.0035 (8)
C210.0288 (10)0.0243 (9)0.0244 (9)−0.0013 (8)0.0027 (7)0.0003 (8)
C220.0218 (9)0.0255 (9)0.0257 (9)0.0023 (7)0.0018 (7)0.0037 (8)
C230.0208 (9)0.0221 (9)0.0269 (9)0.0040 (7)0.0023 (7)0.0004 (7)
C240.0223 (9)0.0227 (9)0.0268 (9)0.0003 (7)0.0038 (7)0.0001 (7)
C250.0272 (10)0.0229 (9)0.0288 (9)−0.0032 (8)0.0075 (7)−0.0030 (8)
C260.0314 (11)0.0308 (10)0.0286 (10)−0.0021 (9)0.0062 (8)−0.0015 (8)
C270.0475 (14)0.0412 (13)0.0306 (11)−0.0081 (11)0.0047 (9)−0.0087 (10)
C280.0542 (15)0.0364 (12)0.0400 (12)−0.0059 (11)0.0127 (11)−0.0163 (10)
C290.0442 (14)0.0283 (11)0.0502 (13)0.0024 (10)0.0126 (11)−0.0108 (10)
C300.0334 (11)0.0277 (10)0.0379 (11)0.0014 (9)0.0036 (9)−0.0035 (9)

Geometric parameters (Å, °)

Cl1—C111.744 (2)C6—C71.473 (3)
Cl2—C261.745 (2)C7—C81.362 (3)
S1—O21.4284 (15)C8—C91.465 (3)
S1—O11.4304 (15)C10—C151.391 (3)
S1—N11.6368 (17)C10—C111.401 (3)
S1—C51.756 (2)C11—C121.385 (3)
S2—O61.4271 (16)C12—C131.384 (3)
S2—O51.4302 (15)C12—H120.9500
S2—N31.6368 (18)C13—C141.378 (3)
S2—C201.761 (2)C13—H130.9500
O3—C71.338 (2)C14—C151.389 (3)
O3—H3O0.83 (3)C14—H140.9500
O4—C91.254 (2)C15—H150.9500
O7—C221.345 (2)C16—C171.387 (3)
O7—H7O0.89 (3)C16—C211.392 (3)
O8—C241.256 (2)C16—H160.9500
N1—C81.435 (2)C17—C181.380 (4)
N1—H1N0.87 (2)C17—H170.9500
N2—C91.346 (2)C18—C191.387 (3)
N2—C101.408 (3)C18—H180.9500
N2—H2N0.82 (2)C19—C201.386 (3)
N3—C231.439 (2)C19—H190.9500
N3—H3N0.89 (2)C20—C211.400 (3)
N4—C241.343 (2)C21—C221.474 (3)
N4—C251.414 (2)C22—C231.361 (3)
N4—H4N0.88 (2)C23—C241.467 (3)
C1—C21.389 (3)C25—C261.396 (3)
C1—C61.394 (3)C25—C301.397 (3)
C1—H10.9500C26—C271.384 (3)
C2—C31.380 (3)C27—C281.380 (4)
C2—H20.9500C27—H270.9500
C3—C41.382 (3)C28—C291.385 (4)
C3—H30.9500C28—H280.9500
C4—C51.387 (3)C29—C301.388 (3)
C4—H40.9500C29—H290.9500
C5—C61.402 (3)C30—H300.9500
O2—S1—O1119.61 (9)C10—C11—Cl1119.75 (16)
O2—S1—N1107.91 (9)C13—C12—C11119.6 (2)
O1—S1—N1107.08 (9)C13—C12—H12120.2
O2—S1—C5107.76 (10)C11—C12—H12120.2
O1—S1—C5110.81 (9)C14—C13—C12119.5 (2)
N1—S1—C5102.26 (9)C14—C13—H13120.3
O6—S2—O5119.52 (10)C12—C13—H13120.3
O6—S2—N3107.77 (9)C13—C14—C15121.4 (2)
O5—S2—N3107.38 (10)C13—C14—H14119.3
O6—S2—C20108.25 (10)C15—C14—H14119.3
O5—S2—C20110.78 (9)C14—C15—C10119.7 (2)
N3—S2—C20101.59 (9)C14—C15—H15120.1
C7—O3—H3O109.8 (19)C10—C15—H15120.1
C22—O7—H7O107.0 (17)C17—C16—C21120.1 (2)
C8—N1—S1115.68 (13)C17—C16—H16119.9
C8—N1—H1N117.0 (15)C21—C16—H16119.9
S1—N1—H1N110.4 (15)C18—C17—C16120.9 (2)
C9—N2—C10130.09 (17)C18—C17—H17119.6
C9—N2—H2N113.3 (17)C16—C17—H17119.6
C10—N2—H2N116.5 (17)C17—C18—C19120.3 (2)
C23—N3—S2115.79 (13)C17—C18—H18119.9
C23—N3—H3N115.3 (15)C19—C18—H18119.9
S2—N3—H3N111.6 (15)C20—C19—C18118.6 (2)
C24—N4—C25130.44 (17)C20—C19—H19120.7
C24—N4—H4N116.0 (15)C18—C19—H19120.7
C25—N4—H4N113.4 (15)C19—C20—C21122.03 (19)
C2—C1—C6120.2 (2)C19—C20—S2120.40 (16)
C2—C1—H1119.9C21—C20—S2117.38 (15)
C6—C1—H1119.9C16—C21—C20118.09 (19)
C3—C2—C1120.6 (2)C16—C21—C22120.74 (19)
C3—C2—H2119.7C20—C21—C22121.17 (17)
C1—C2—H2119.7O7—C22—C23123.13 (18)
C2—C3—C4120.3 (2)O7—C22—C21114.48 (17)
C2—C3—H3119.8C23—C22—C21122.39 (17)
C4—C3—H3119.8C22—C23—N3120.84 (17)
C3—C4—C5119.1 (2)C22—C23—C24121.70 (17)
C3—C4—H4120.5N3—C23—C24117.32 (16)
C5—C4—H4120.5O8—C24—N4124.42 (18)
C4—C5—C6121.64 (19)O8—C24—C23120.82 (17)
C4—C5—S1120.83 (16)N4—C24—C23114.76 (16)
C6—C5—S1117.38 (15)C26—C25—C30118.66 (19)
C1—C6—C5118.06 (18)C26—C25—N4117.81 (18)
C1—C6—C7120.92 (18)C30—C25—N4123.53 (19)
C5—C6—C7121.01 (17)C27—C26—C25121.4 (2)
O3—C7—C8123.19 (17)C27—C26—Cl2118.85 (17)
O3—C7—C6114.07 (16)C25—C26—Cl2119.75 (16)
C8—C7—C6122.73 (17)C28—C27—C26119.5 (2)
C7—C8—N1120.91 (17)C28—C27—H27120.3
C7—C8—C9121.83 (17)C26—C27—H27120.3
N1—C8—C9117.07 (16)C27—C28—C29119.9 (2)
O4—C9—N2123.81 (18)C27—C28—H28120.0
O4—C9—C8120.71 (17)C29—C28—H28120.0
N2—C9—C8115.45 (17)C28—C29—C30121.0 (2)
C15—C10—C11118.37 (18)C28—C29—H29119.5
C15—C10—N2124.07 (18)C30—C29—H29119.5
C11—C10—N2117.55 (18)C29—C30—C25119.6 (2)
C12—C11—C10121.4 (2)C29—C30—H30120.2
C12—C11—Cl1118.89 (17)C25—C30—H30120.2
O2—S1—N1—C8−63.66 (16)C13—C14—C15—C100.8 (4)
O1—S1—N1—C8166.37 (14)C11—C10—C15—C140.1 (3)
C5—S1—N1—C849.81 (16)N2—C10—C15—C14−178.5 (2)
O6—S2—N3—C23−63.06 (16)C21—C16—C17—C180.3 (4)
O5—S2—N3—C23166.96 (14)C16—C17—C18—C190.9 (4)
C20—S2—N3—C2350.61 (16)C17—C18—C19—C20−1.0 (4)
C6—C1—C2—C30.0 (3)C18—C19—C20—C210.1 (3)
C1—C2—C3—C41.4 (4)C18—C19—C20—S2175.04 (18)
C2—C3—C4—C5−0.5 (3)O6—S2—C20—C19−97.28 (19)
C3—C4—C5—C6−1.7 (3)O5—S2—C20—C1935.6 (2)
C3—C4—C5—S1173.86 (16)N3—S2—C20—C19149.40 (18)
O2—S1—C5—C4−96.73 (18)O6—S2—C20—C2177.92 (18)
O1—S1—C5—C435.9 (2)O5—S2—C20—C21−149.22 (16)
N1—S1—C5—C4149.69 (17)N3—S2—C20—C21−35.39 (18)
O2—S1—C5—C678.99 (17)C17—C16—C21—C20−1.2 (3)
O1—S1—C5—C6−148.42 (15)C17—C16—C21—C22178.5 (2)
N1—S1—C5—C6−34.59 (17)C19—C20—C21—C161.1 (3)
C2—C1—C6—C5−2.2 (3)S2—C20—C21—C16−174.06 (16)
C2—C1—C6—C7179.0 (2)C19—C20—C21—C22−178.64 (19)
C4—C5—C6—C13.0 (3)S2—C20—C21—C226.2 (3)
S1—C5—C6—C1−172.66 (15)C16—C21—C22—O716.3 (3)
C4—C5—C6—C7−178.18 (18)C20—C21—C22—O7−163.96 (18)
S1—C5—C6—C76.1 (2)C16—C21—C22—C23−164.7 (2)
C1—C6—C7—O313.8 (3)C20—C21—C22—C2315.0 (3)
C5—C6—C7—O3−164.97 (17)O7—C22—C23—N3−179.88 (17)
C1—C6—C7—C8−167.18 (19)C21—C22—C23—N31.2 (3)
C5—C6—C7—C814.1 (3)O7—C22—C23—C244.5 (3)
O3—C7—C8—N1−178.75 (17)C21—C22—C23—C24−174.39 (17)
C6—C7—C8—N12.3 (3)S2—N3—C23—C22−38.4 (2)
O3—C7—C8—C96.4 (3)S2—N3—C23—C24137.43 (15)
C6—C7—C8—C9−172.57 (17)C25—N4—C24—O81.1 (3)
S1—N1—C8—C7−38.3 (2)C25—N4—C24—C23−177.98 (18)
S1—N1—C8—C9136.81 (15)C22—C23—C24—O8−8.3 (3)
C10—N2—C9—O4−2.1 (3)N3—C23—C24—O8175.95 (17)
C10—N2—C9—C8179.71 (19)C22—C23—C24—N4170.83 (18)
C7—C8—C9—O4−9.2 (3)N3—C23—C24—N4−4.9 (3)
N1—C8—C9—O4175.77 (17)C24—N4—C25—C26169.9 (2)
C7—C8—C9—N2169.08 (18)C24—N4—C25—C30−10.4 (3)
N1—C8—C9—N2−6.0 (3)C30—C25—C26—C270.6 (3)
C9—N2—C10—C15−10.1 (3)N4—C25—C26—C27−179.67 (19)
C9—N2—C10—C11171.3 (2)C30—C25—C26—Cl2−179.24 (16)
C15—C10—C11—C12−0.9 (3)N4—C25—C26—Cl20.5 (3)
N2—C10—C11—C12177.8 (2)C25—C26—C27—C280.1 (3)
C15—C10—C11—Cl1179.31 (16)Cl2—C26—C27—C28−179.99 (18)
N2—C10—C11—Cl1−2.0 (3)C26—C27—C28—C29−0.7 (4)
C10—C11—C12—C130.8 (3)C27—C28—C29—C300.5 (4)
Cl1—C11—C12—C13−179.42 (19)C28—C29—C30—C250.2 (3)
C11—C12—C13—C140.1 (4)C26—C25—C30—C29−0.8 (3)
C12—C13—C14—C15−0.9 (4)N4—C25—C30—C29179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.83 (3)1.89 (3)2.612 (2)144 (3)
O3—H3O···O4i0.83 (3)2.33 (3)2.854 (2)122 (2)
O7—H7O···O80.89 (3)1.81 (3)2.607 (2)147 (2)
O7—H7O···O8ii0.89 (3)2.46 (3)2.964 (2)116 (2)
N1—H1N···O8ii0.87 (2)2.06 (2)2.911 (2)164 (2)
N2—H2N···N10.82 (2)2.24 (2)2.700 (2)116 (2)
N2—H2N···Cl10.82 (2)2.47 (2)2.930 (2)116 (2)
N3—H3N···O4i0.89 (2)2.07 (2)2.912 (2)157 (2)
N4—H4N···N30.88 (2)2.23 (2)2.692 (2)113 (2)
N4—H4N···Cl20.88 (2)2.41 (2)2.934 (2)119 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2886).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
  • Banerjee, R. & Sarkar, M. (2002). J. Lumin.99, 255–263.
  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structute Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH Publishers.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Myung, S. P., Eun, S. C., Myung, S. L. & Soon-kyoung, K. (2002). Bull. Korean Chem. Soc.23, 1836–1838.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shin, H. S., Park, M. S. & Kwon, S. K. (2000). Yakhak Hoechi, 44, 272–278.
  • Siddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak.28, 583–589.
  • Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun.37, 767–773.
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography