PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1069–m1070.
Published online 2009 August 15. doi:  10.1107/S1600536809031237
PMCID: PMC2969955

catena-Poly[[[triaqua­(4,5-diaza­fluorene-9-one)cadmium]-μ-benzene-1,3-dicarboxyl­ato] dihydrate]

Abstract

In the title compound, {[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2O}n, the CdII atom is seven-coordinated by two N atoms from the phenanthroline-derived 4,5-diaza­fluorene-9-one ligand, two O atoms from one bidentate benzene-1,3-dicarboxyl­ate ligand and three O atoms from the three water mol­ecules in a distorted penta­gonal-bipyramidal arrangement. Moreover, there are two dissociative water mol­ecules in each unit. Neighbouring units inter­act through π–π inter­actions [centroid–centroid distances = 3.325 (3) and 3.358 (4) Å] and O—H(...)O hydrogen-bonding, resulting in a two-dimensional network extending parallel to (001).

Related literature

The 1,10-phenanthroline (phen) ligand has been widely used to build novel supra­molecular architectures through its aromatic π–π inter­ations, see: Chen & Liu (2002 [triangle]). The phen derivative 4,5-diaza­fluorene-9-one was recently shown to form a coordination polymer with a distinctive supra­molecular architecture, see: Kraft et al. (2002 [triangle]). For the ligand synthesis, see: Henderson et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1069-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2O
  • M r = 548.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1069-efi1.jpg
  • a = 6.9383 (10) Å
  • b = 10.8070 (16) Å
  • c = 14.429 (2) Å
  • α = 96.268 (2)°
  • β = 92.602 (2)°
  • γ = 102.019 (2)°
  • V = 1049.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 293 K
  • 0.34 × 0.29 × 0.20 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.697, T max = 0.804
  • 5319 measured reflections
  • 3804 independent reflections
  • 3260 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.093
  • S = 1.05
  • 3804 reflections
  • 284 parameters
  • H-atom parameters constrained
  • Δρmax = 1.39 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031237/jh2092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031237/jh2092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Baicheng Normal University for supporting this work.

supplementary crystallographic information

Comment

The 1,10-phenanthroline (phen) ligand has been widely used to build novel supramolecular architectures through its aromatic π-π interations (Chen & Liu, 2002). The phen derivative 4,5-diazafluorene-9-one (C11H6N2O; L), was recently shown to form a coordination polymer with a distinctive supramolecular architecture (Kraft et al., 2002). We selected benzene-1,3-dicarboxylate (C8H4O42-; 1,3-BDC) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Cd(C11H6N2O)(C8H4O4)(H2O)3.2H2O], a new coordinationg polymer, which is reported here. In compound (I), the CdII atom of unit is surrounded by two N atoms derived from the bidentate L ligand, two O atom from a bidentate 1,3-BDC ligand and three O atoms from three H2O moleculars. This results in a very distorted CdN2O5 pentagonal bipyramid with the donor atoms of both the bidentate species occupying both an equatorial and an axial site (Table 1, Fig.1). The average Cd—O and Cd—N distances are 2.352 (3) and 2.482 (3) Å, respectively. Neighbouring units in (I) are connectede through π-π interactions between L ligands with π-π stacking distances of 3.325 (3) and 3.358 (4) Å, resulting in a two-dimensional supramolecular structure. Finally, interunit OW—H···O hydrogen bonds (Table 2) complete the structure of (I).

Experimental

Ligand L was synthesized according to the literature method. (Henderson et al., 1984). A mixture of CdCl2 (0.3 mmol), L(0.1 mmol) and H21,3-BDC (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: yellow crystals of (I) were collected.

Refinement

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C).

Figures

Fig. 1.
view of the local coordination of Cd(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (arbitrary spheres for the H atoms).
Fig. 2.
A view of the two-dimensional supramolecular structure of (I) generated by π-π interactions.

Crystal data

[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2OZ = 2
Mr = 548.78F(000) = 552.0
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9383 (10) ÅCell parameters from 25 reflections
b = 10.8070 (16) Åθ = 7.5–15°
c = 14.429 (2) ŵ = 1.10 mm1
α = 96.268 (2)°T = 293 K
β = 92.602 (2)°Block, yellow
γ = 102.019 (2)°0.34 × 0.29 × 0.20 mm
V = 1049.3 (3) Å3

Data collection

Bruker APEXII diffractometer3804 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 0 pixels mm-1θmax = 25.3°, θmin = 1.4°
ω scansh = −8→6
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −12→12
Tmin = 0.697, Tmax = 0.804l = −17→15
5319 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0466P)2 + 0.937P] where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.41915 (4)0.92090 (2)0.19901 (2)0.03260 (12)
O10.4624 (5)0.7585 (3)0.2984 (2)0.0506 (8)
O20.2646 (5)0.7034 (3)0.1714 (2)0.0507 (8)
O30.0030 (5)0.2413 (3)0.0709 (2)0.0466 (7)
O40.0050 (4)0.1021 (2)0.1719 (2)0.0448 (7)
O50.2170 (4)0.9328 (3)0.06495 (19)0.0423 (7)
HO5A0.15230.86170.03760.051*
HO5B0.13100.99040.07850.051*
O60.1543 (4)0.9578 (3)0.28319 (19)0.0409 (7)
HO6A0.06520.88780.29780.049*
HO6B0.08571.00670.24390.049*
O70.6983 (4)0.8944 (3)0.1303 (2)0.0423 (7)
HO7A0.79090.96160.11640.051*
HO7B0.72460.81500.11850.051*
O80.8494 (5)1.5000 (3)0.3739 (3)0.0547 (8)
OW10.1330 (6)0.2440 (4)0.6739 (3)0.0680 (10)*
HW1A0.15940.32830.67550.082*
HW1B0.22870.19980.66740.082*
OW20.8579 (5)0.6822 (3)0.0952 (2)0.0534 (8)
HW2A0.90770.69710.03350.064*
HW2B0.98560.68310.12260.064*
N10.6184 (5)1.0507 (3)0.3377 (2)0.0365 (8)
N20.5214 (5)1.1420 (3)0.1616 (2)0.0328 (7)
C10.6800 (7)1.0281 (4)0.4218 (3)0.0478 (11)
H1A0.65410.94430.43520.057*
C20.7803 (8)1.1222 (5)0.4906 (3)0.0562 (13)
H2A0.82121.10060.54780.067*
C30.8193 (7)1.2488 (5)0.4736 (3)0.0482 (11)
H3A0.88471.31380.51880.058*
C40.7579 (6)1.2732 (4)0.3883 (3)0.0341 (9)
C50.7763 (6)1.3928 (4)0.3402 (3)0.0389 (10)
C60.6842 (6)1.3482 (4)0.2420 (3)0.0354 (9)
C70.6627 (6)1.4071 (4)0.1647 (3)0.0451 (11)
H7A0.70731.49460.16560.054*
C80.5715 (7)1.3310 (5)0.0844 (3)0.0487 (11)
H80.55591.36700.02960.058*
C90.5033 (6)1.2005 (4)0.0861 (3)0.0404 (10)
H9A0.44191.15170.03160.049*
C100.6136 (5)1.2180 (3)0.2354 (3)0.0291 (8)
C110.6594 (6)1.1723 (4)0.3241 (3)0.0320 (8)
C120.3421 (6)0.6768 (4)0.2441 (3)0.0362 (9)
C130.2920 (5)0.5422 (4)0.2679 (3)0.0318 (8)
C140.3450 (6)0.5166 (4)0.3568 (3)0.0362 (9)
H14A0.41130.58200.40140.043*
C150.2974 (6)0.3917 (4)0.3781 (3)0.0411 (10)
H15A0.33120.37370.43750.049*
C160.2012 (6)0.2952 (4)0.3122 (3)0.0338 (9)
H16A0.17040.21210.32730.041*
C170.1493 (5)0.3197 (3)0.2233 (3)0.0276 (8)
C180.1937 (5)0.4439 (3)0.2020 (3)0.0309 (8)
H19A0.15730.46150.14280.037*
C190.0452 (5)0.2137 (3)0.1493 (3)0.0311 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03412 (18)0.02318 (16)0.03710 (18)0.00121 (11)−0.00345 (12)0.00067 (11)
O10.0498 (19)0.0243 (15)0.069 (2)−0.0032 (13)−0.0120 (16)−0.0015 (14)
O20.055 (2)0.0298 (16)0.063 (2)0.0004 (14)−0.0124 (16)0.0103 (14)
O30.0568 (19)0.0375 (16)0.0360 (17)−0.0061 (14)−0.0068 (14)−0.0016 (13)
O40.0468 (18)0.0216 (14)0.061 (2)0.0021 (12)−0.0168 (15)0.0021 (13)
O50.0478 (18)0.0318 (15)0.0423 (17)0.0043 (13)−0.0111 (13)−0.0030 (12)
O60.0420 (16)0.0411 (16)0.0401 (16)0.0089 (13)0.0007 (13)0.0081 (13)
O70.0371 (16)0.0300 (15)0.0556 (18)0.0009 (12)0.0049 (14)−0.0019 (13)
O80.0515 (19)0.0296 (17)0.076 (2)0.0010 (14)−0.0073 (17)−0.0039 (15)
OW20.0510 (19)0.0481 (19)0.061 (2)0.0056 (15)0.0053 (16)0.0144 (16)
N10.0396 (19)0.0273 (17)0.0382 (19)−0.0008 (14)0.0019 (15)0.0008 (14)
N20.0299 (17)0.0321 (18)0.0330 (18)0.0024 (14)−0.0027 (14)−0.0014 (14)
C10.067 (3)0.038 (2)0.039 (2)0.009 (2)0.002 (2)0.011 (2)
C20.069 (3)0.060 (3)0.036 (3)0.009 (3)−0.006 (2)0.010 (2)
C30.049 (3)0.051 (3)0.038 (2)0.002 (2)−0.005 (2)−0.007 (2)
C40.027 (2)0.034 (2)0.036 (2)0.0024 (16)0.0011 (16)−0.0111 (17)
C50.028 (2)0.029 (2)0.055 (3)0.0015 (17)0.0003 (18)−0.0055 (19)
C60.027 (2)0.0250 (19)0.053 (3)0.0035 (16)0.0016 (18)0.0025 (18)
C70.039 (2)0.031 (2)0.065 (3)0.0043 (19)0.002 (2)0.013 (2)
C80.040 (2)0.062 (3)0.050 (3)0.018 (2)0.004 (2)0.020 (2)
C90.039 (2)0.044 (2)0.036 (2)0.0053 (19)0.0006 (18)0.0020 (19)
C100.0218 (18)0.0279 (19)0.036 (2)0.0036 (15)0.0032 (15)−0.0014 (16)
C110.030 (2)0.027 (2)0.036 (2)0.0012 (16)0.0006 (16)−0.0024 (16)
C120.030 (2)0.025 (2)0.051 (3)0.0025 (17)0.0037 (19)0.0002 (18)
C130.0259 (19)0.027 (2)0.041 (2)0.0049 (16)0.0000 (16)0.0001 (16)
C140.039 (2)0.030 (2)0.037 (2)0.0061 (17)−0.0036 (18)−0.0050 (17)
C150.045 (2)0.045 (2)0.034 (2)0.011 (2)−0.0019 (18)0.0073 (19)
C160.035 (2)0.0262 (19)0.042 (2)0.0084 (17)0.0033 (17)0.0063 (17)
C170.0238 (18)0.0235 (18)0.035 (2)0.0036 (15)0.0008 (15)0.0021 (15)
C180.028 (2)0.0264 (19)0.036 (2)0.0041 (16)0.0003 (16)0.0010 (16)
C190.0247 (19)0.024 (2)0.043 (2)0.0039 (15)0.0011 (17)−0.0023 (17)

Geometric parameters (Å, °)

Cd1—O72.271 (3)C1—H1A0.9300
Cd1—O62.326 (3)C2—C31.388 (7)
Cd1—O22.354 (3)C2—H2A0.9300
Cd1—O52.368 (3)C3—C41.356 (6)
Cd1—O12.441 (3)C3—H3A0.9300
Cd1—N22.472 (3)C4—C111.388 (5)
Cd1—N12.492 (3)C4—C51.517 (6)
Cd1—C122.736 (4)C5—C61.514 (6)
O1—C121.254 (5)C6—C71.361 (6)
O2—C121.246 (5)C6—C101.381 (5)
O3—C191.238 (5)C7—C81.388 (7)
O4—C191.262 (5)C7—H7A0.9300
O5—HO5A0.8494C8—C91.394 (6)
O5—HO5B0.9593C8—H80.9300
O6—HO6A0.9221C9—H9A0.9300
O6—HO6B0.9864C10—C111.466 (6)
O7—HO7A0.9108C12—C131.505 (5)
O7—HO7B0.9138C13—C181.384 (5)
O8—C51.203 (5)C13—C141.390 (6)
OW1—HW1A0.8890C14—C151.393 (6)
OW1—HW1B0.8979C14—H14A0.9300
OW2—HW2A0.9870C15—C161.369 (6)
OW2—HW2B0.9517C15—H15A0.9300
N1—C111.324 (5)C16—C171.385 (5)
N1—C11.333 (5)C16—H16A0.9300
N2—C101.321 (5)C17—C181.385 (5)
N2—C91.332 (5)C17—C191.514 (5)
C1—C21.388 (7)C18—H19A0.9300
O7—Cd1—O6174.04 (10)C4—C3—H3A121.5
O7—Cd1—O294.34 (11)C2—C3—H3A121.5
O6—Cd1—O289.02 (11)C3—C4—C11118.9 (4)
O7—Cd1—O599.74 (11)C3—C4—C5134.3 (4)
O6—Cd1—O585.55 (10)C11—C4—C5106.8 (4)
O2—Cd1—O582.74 (10)O8—C5—C6127.8 (4)
O7—Cd1—O188.67 (11)O8—C5—C4126.7 (4)
O6—Cd1—O189.30 (11)C6—C5—C4105.5 (3)
O2—Cd1—O154.28 (10)C7—C6—C10118.1 (4)
O5—Cd1—O1136.81 (10)C7—C6—C5134.3 (4)
O7—Cd1—N283.60 (10)C10—C6—C5107.6 (3)
O6—Cd1—N295.28 (10)C6—C7—C8117.1 (4)
O2—Cd1—N2156.30 (11)C6—C7—H7A121.4
O5—Cd1—N274.40 (10)C8—C7—H7A121.4
O1—Cd1—N2148.78 (10)C7—C8—C9119.9 (4)
O7—Cd1—N190.91 (11)C7—C8—H8120.1
O6—Cd1—N183.18 (11)C9—C8—H8120.1
O2—Cd1—N1131.53 (11)N2—C9—C8123.6 (4)
O5—Cd1—N1143.43 (10)N2—C9—H9A118.2
O1—Cd1—N177.78 (10)C8—C9—H9A118.2
N2—Cd1—N172.17 (11)N2—C10—C6127.1 (4)
O7—Cd1—C1292.22 (11)N2—C10—C11123.2 (3)
O6—Cd1—C1288.55 (11)C6—C10—C11109.7 (3)
O2—Cd1—C1227.01 (11)N1—C11—C4126.0 (4)
O5—Cd1—C12109.62 (11)N1—C11—C10123.7 (3)
O1—Cd1—C1227.27 (11)C4—C11—C10110.3 (3)
N2—Cd1—C12174.70 (11)O2—C12—O1122.2 (4)
N1—Cd1—C12104.75 (12)O2—C12—C13119.4 (4)
C12—O1—Cd189.6 (3)O1—C12—C13118.4 (4)
C12—O2—Cd193.9 (2)O2—C12—Cd159.1 (2)
Cd1—O5—HO5A115.3O1—C12—Cd163.1 (2)
Cd1—O5—HO5B111.3C13—C12—Cd1177.9 (3)
HO5A—O5—HO5B110.7C18—C13—C14119.9 (4)
Cd1—O6—HO6A117.7C18—C13—C12120.4 (4)
Cd1—O6—HO6B104.4C14—C13—C12119.6 (4)
HO6A—O6—HO6B109.4C13—C14—C15119.1 (4)
Cd1—O7—HO7A122.1C13—C14—H14A120.4
Cd1—O7—HO7B120.4C15—C14—H14A120.4
HO7A—O7—HO7B117.4C16—C15—C14120.5 (4)
HW1A—OW1—HW1B121.2C16—C15—H15A119.8
HW2A—OW2—HW2B93.1C14—C15—H15A119.8
C11—N1—C1114.5 (4)C15—C16—C17120.7 (4)
C11—N1—Cd1109.7 (3)C15—C16—H16A119.6
C1—N1—Cd1135.7 (3)C17—C16—H16A119.6
C10—N2—C9114.2 (3)C16—C17—C18119.1 (3)
C10—N2—Cd1110.7 (2)C16—C17—C19121.4 (3)
C9—N2—Cd1135.1 (3)C18—C17—C19119.5 (3)
N1—C1—C2124.0 (4)C13—C18—C17120.6 (4)
N1—C1—H1A118.0C13—C18—H19A119.7
C2—C1—H1A118.0C17—C18—H19A119.7
C1—C2—C3119.7 (4)O3—C19—O4123.9 (4)
C1—C2—H2A120.2O3—C19—C17118.5 (3)
C3—C2—H2A120.2O4—C19—C17117.5 (3)
C4—C3—C2117.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—HO5A···O3i0.851.952.728 (4)151
O5—HO5B···O4ii0.962.062.933 (4)151
O6—HO6A···OW1iii0.921.862.776 (5)175
O6—HO6B···O4ii0.991.702.675 (4)171
O7—HO7A···O4iv0.911.962.744 (4)143
O7—HO7B···OW20.911.872.757 (4)162
OW1—HW1A···O8v0.892.072.903 (5)156
OW1—HW1B···O1vi0.902.122.824 (5)135
OW2—HW2A···O3vii0.991.802.769 (4)168
OW2—HW2B···O2viii0.951.992.936 (5)173

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) x+1, y+1, z; (v) −x+1, −y+2, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, −z; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2092).

References

  • Bruker (1998). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J.8, 4811–4817. [PubMed]
  • Henderson, L. J., Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc.106, 5876–5879.
  • Kraft, B. J., Eppley, H. J., Huffman, J. C. & Zaleski, J. M. (2002). J. Am. Chem. Soc.124, 272–280. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography