PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2130.
Published online 2009 August 12. doi:  10.1107/S1600536809030384
PMCID: PMC2969952

1-[1-(4-Chloro­phen­yl)ethyl­idene]carbono­hydrazide

Abstract

The mol­ecular skeleton of the title mol­ecule, C9H11ClN4O, is essentially planar, the dihedral angle between the ring and the and N/N/C plane being 6.7 (3)°. In the crystal, inter­molecular N—H(...)O and N—H(...)N hydrogen bonds link the mol­ecules into ribbons propagated along [010].

Related literature

For the biological activity of carbonohydrazide derivatives, see: Loncle et al. (2004 [triangle]). For related structures, see Meyers et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2130-scheme1.jpg

Experimental

Crystal data

  • C9H11ClN4O
  • M r = 226.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2130-efi1.jpg
  • a = 14.6429 (14) Å
  • b = 9.6041 (12) Å
  • c = 7.4327 (9) Å
  • β = 90.102 (1)°
  • V = 1045.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 K
  • 0.40 × 0.30 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.875, T max = 0.960
  • 4419 measured reflections
  • 1837 independent reflections
  • 1085 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.126
  • S = 1.01
  • 1837 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030384/cv2587sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030384/cv2587Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support by the Science Foundation of China (grant No. 20877037).

supplementary crystallographic information

Comment

A number of carbonohydrazide derivatives have been claimed to possess a bioactivity such as antibacterial, antifungal, anticonvulsant and anticancer activities (Loncle et al., 2004). We describe in this paper a user-friendly, solvent-free protocol for the synthesis of substituted carbonohydrazide starting from the fragrant ketones and carbohydrazide under solvent-free conditions in this paper. Using this method, which can be considered as a a general method for the synthesis of substituted carbonohydrazides, we obtained the title compound, (I). We present here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in bis(3-fluorophenylmethine)carbonohydrazide (Meyers et al., 1995). The N4/N3/C1 and N2/N1/C1 planes form a dihedral angle of 4.09 (4)°, while ring C4-C9 and N2/N1/C1 plane form a dihedral angle of 2.64 (29)°.

In the crystal, intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into ribbons propagated in direction [010].

Experimental

p-Chloroacetophenone (5.0 mmol) and carbohydrazide (5.0 mmol) were mixed in 50 ml flash under sovlent-free condtions After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C9H11ClN4O: C 47.69, H 4.89, N 24.72%; found: C 47.63, H 4.75, N 24.64%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H = 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C) (C,N).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C9H11ClN4OF(000) = 472
Mr = 226.67Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.6429 (14) ÅCell parameters from 963 reflections
b = 9.6041 (12) Åθ = 2.5–22.7°
c = 7.4327 (9) ŵ = 0.34 mm1
β = 90.102 (1)°T = 298 K
V = 1045.3 (2) Å3Needle, colourless
Z = 40.40 × 0.30 × 0.12 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer1837 independent reflections
Radiation source: fine-focus sealed tube1085 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→17
Tmin = 0.875, Tmax = 0.960k = −11→11
4419 measured reflectionsl = −7→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3562P] where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max = 0.002
137 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.94869 (7)1.35122 (11)0.60169 (13)0.0725 (4)
N10.57886 (16)0.7625 (2)0.3769 (3)0.0405 (7)
H10.59450.67910.40570.049*
N20.63579 (17)0.8715 (2)0.4127 (3)0.0375 (6)
N30.47946 (16)0.9177 (2)0.2451 (3)0.0429 (7)
H30.51750.98280.27190.051*
N40.39947 (16)0.9500 (2)0.1494 (3)0.0434 (7)
H4A0.40010.90580.04430.065*
H4B0.35130.92240.21290.065*
O10.44329 (14)0.6900 (2)0.2677 (3)0.0460 (6)
C10.4970 (2)0.7867 (3)0.2949 (4)0.0358 (7)
C20.7519 (2)0.7025 (3)0.5085 (4)0.0518 (9)
H2A0.70620.64790.56820.078*
H2B0.80560.70750.58250.078*
H2C0.76690.66010.39550.078*
C30.7158 (2)0.8469 (3)0.4762 (4)0.0357 (7)
C40.77306 (19)0.9705 (3)0.5105 (4)0.0353 (7)
C50.8596 (2)0.9605 (3)0.5861 (4)0.0458 (8)
H50.88210.87330.61730.055*
C60.9131 (2)1.0768 (4)0.6161 (4)0.0511 (9)
H60.97101.06760.66630.061*
C70.8802 (2)1.2056 (3)0.5714 (4)0.0443 (8)
C80.7950 (2)1.2196 (4)0.4976 (4)0.0513 (9)
H80.77291.30740.46780.062*
C90.7423 (2)1.1031 (3)0.4676 (4)0.0475 (9)
H90.68451.11360.41730.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0749 (7)0.0666 (7)0.0758 (7)−0.0359 (5)−0.0187 (5)0.0017 (5)
N10.0364 (16)0.0234 (14)0.0618 (18)0.0002 (12)−0.0087 (13)0.0031 (12)
N20.0367 (15)0.0287 (15)0.0471 (15)−0.0058 (12)−0.0022 (12)−0.0013 (11)
N30.0377 (16)0.0238 (15)0.0671 (18)−0.0020 (12)−0.0125 (13)0.0000 (12)
N40.0361 (15)0.0335 (15)0.0605 (17)0.0027 (12)−0.0060 (12)0.0004 (12)
O10.0397 (13)0.0231 (12)0.0753 (16)−0.0055 (10)−0.0085 (11)0.0006 (10)
C10.0372 (19)0.0216 (18)0.0488 (19)0.0004 (14)0.0016 (15)−0.0018 (14)
C20.055 (2)0.043 (2)0.058 (2)0.0051 (18)−0.0117 (17)−0.0020 (16)
C30.0360 (19)0.0370 (18)0.0342 (16)0.0020 (15)−0.0013 (14)−0.0022 (14)
C40.0332 (18)0.0379 (19)0.0349 (17)−0.0019 (14)−0.0016 (14)−0.0011 (14)
C50.042 (2)0.044 (2)0.051 (2)−0.0002 (17)−0.0057 (16)0.0064 (16)
C60.041 (2)0.061 (3)0.052 (2)−0.0070 (19)−0.0125 (16)0.0029 (18)
C70.045 (2)0.045 (2)0.0431 (19)−0.0125 (17)−0.0041 (16)−0.0033 (15)
C80.052 (2)0.037 (2)0.065 (2)−0.0075 (17)−0.0142 (18)0.0026 (16)
C90.0366 (19)0.042 (2)0.064 (2)−0.0034 (16)−0.0142 (16)0.0021 (17)

Geometric parameters (Å, °)

Cl1—C71.735 (3)C2—H2B0.9600
N1—C11.364 (4)C2—H2C0.9600
N1—N21.364 (3)C3—C41.476 (4)
N1—H10.8600C4—C51.388 (4)
N2—C31.285 (4)C4—C91.387 (4)
N3—C11.336 (3)C5—C61.382 (4)
N3—N41.404 (3)C5—H50.9300
N3—H30.8600C6—C71.368 (4)
N4—H4A0.8900C6—H60.9300
N4—H4B0.8900C7—C81.369 (4)
O1—C11.234 (3)C8—C91.378 (4)
C2—C31.502 (4)C8—H80.9300
C2—H2A0.9600C9—H90.9300
C1—N1—N2119.5 (2)N2—C3—C2123.3 (3)
C1—N1—H1120.2C4—C3—C2121.1 (3)
N2—N1—H1120.3C5—C4—C9116.9 (3)
C3—N2—N1119.1 (2)C5—C4—C3122.1 (3)
C1—N3—N4120.5 (2)C9—C4—C3121.0 (3)
C1—N3—H3119.7C6—C5—C4121.7 (3)
N4—N3—H3119.7C6—C5—H5119.1
N3—N4—H4A109.2C4—C5—H5119.1
N3—N4—H4B109.1C7—C6—C5119.5 (3)
H4A—N4—H4B109.5C7—C6—H6120.2
O1—C1—N3122.8 (3)C5—C6—H6120.2
O1—C1—N1120.3 (3)C6—C7—C8120.4 (3)
N3—C1—N1116.9 (3)C6—C7—Cl1119.6 (2)
C3—C2—H2A109.5C8—C7—Cl1119.9 (3)
C3—C2—H2B109.5C7—C8—C9119.7 (3)
H2A—C2—H2B109.5C7—C8—H8120.2
C3—C2—H2C109.5C9—C8—H8120.2
H2A—C2—H2C109.5C8—C9—C4121.8 (3)
H2B—C2—H2C109.5C8—C9—H9119.1
N2—C3—C4115.6 (3)C4—C9—H9119.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.862.243.024 (3)152
N3—H3···O1ii0.862.092.850 (3)147
N4—H4A···O1iii0.892.343.206 (3)164

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2587).

References

  • Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem.39, 1067–1071. [PubMed]
  • Meyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775–777.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography