PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1054.
Published online 2009 August 8. doi:  10.1107/S1600536809030931
PMCID: PMC2969946

Bis(2-amino­benzothia­zole-κN 1)bis­(thio­cyanato-κN)zinc(II)

Abstract

The ZnII ion in the title complex, [Zn(NCS)2(C7H6N2S)2], is tetra­hedrally coordinated within an N4 donor set defined by two N atoms of two terminal isothio­cyanate ligands and by two heterocyclic N atoms of two different 2-amino­benzothia­zole ligands. This arrangement is stabilized by intra­molecular N—H(...)N hydrogen bonds. In the crystal structure, mol­ecules are linked through N—H(...)S hydrogen bonds to form a two-dimensional array.

Related literature

For related literature on organic–inorganic hybrid supra­molecular complexes, see: Batten & Robson (1998 [triangle]); Braga et al. (1998 [triangle]); Iwamoto (1996 [triangle]). For the use of pseudo-halides in the construction of supra­molecular assemblies, see: Vrieze & Koten (1987 [triangle]); Cortes et al. (1997 [triangle]); Yun et al. (2004 [triangle]); Kim et al. (2001 [triangle], 2008 [triangle]). For the coordination chemistry of imidazole and thia­zole derivatives, see: Balch et al. (1993 [triangle]); Costes et al. (1991 [triangle]); Suh et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1054-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)2(C7H6N2S)2]
  • M r = 481.93
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1054-efi1.jpg
  • a = 8.4379 (1) Å
  • b = 9.4900 (1) Å
  • c = 13.3037 (2) Å
  • α = 97.735 (1)°
  • β = 107.302 (1)°
  • γ = 94.232 (1)°
  • V = 1000.52 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.66 mm−1
  • T = 296 K
  • 0.41 × 0.28 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi scan (SADABS; Bruker, 2001 [triangle]) T min = 0.550, T max = 0.722
  • 19351 measured reflections
  • 4901 independent reflections
  • 4238 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.079
  • S = 1.05
  • 4901 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030931/tk2521sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030931/tk2521Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Organic-inorganic hybrid supramolecular complexes of 1-, 2-, and 3-D frameworks has attracted great interest recently (Iwamoto, 1996; Batten & Robson, 1998), as they have useful properties, viz. electronic, magnetic, optical, catalytic, etc. (Braga et al., 1998). For designing novel multi-dimensional frameworks, we (Kim et al., 2001; Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of various pseudohalide ions and complementary organic ligands. Pseudo-halide ions, e.g. CN-, SCN-, N3-, are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is also known to play an important role in stabilizing multi-dimensional structures. In particulae, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, frameworks of metal complexes containing thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular framework structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007). Herein, we present the synthesis and structure determination of the title complex, (I), with 2-aminobenzothiazole, Fig. 1.

Experimental

A water-methanolic (1:1) solution (20 ml) of potassium thiocyanate (2 mmol, 0.19 g) was added to a water-methanolic (1:1) solution (20 ml) of Zn(NO3)2.6H2O (1 mmol, 0.30 g). To this mixture, a water-methanolic (1:1) solution (20 ml) of 2-aminobenzothiazole (3 mmol, 0.45 g) was introduced, with stirring. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a few days silver blocks were obtained. Elemental analysis found: C 40.41, H 2.67, N 18.11, S 26.59, Zn 13.60%; C16H12N6S4Zn requires: C 39.87, H 2.51, N 17.44, S 26.61, Zn 13.56%.

Refinement

Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Zn(NCS)2(C7H6N2S)2]Z = 2
Mr = 481.93F(000) = 488
Triclinic, P1Dx = 1.600 Mg m3Dm = 1.59 Mg m3Dm measured by flotation method
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4379 (1) ÅCell parameters from 9879 reflections
b = 9.4900 (1) Åθ = 2.5–28.1°
c = 13.3037 (2) ŵ = 1.66 mm1
α = 97.735 (1)°T = 296 K
β = 107.302 (1)°Block, silver
γ = 94.232 (1)°0.41 × 0.28 × 0.21 mm
V = 1000.52 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4901 independent reflections
Radiation source: fine-focus sealed tube4238 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi scan (SADABS; Bruker, 2001)h = −11→11
Tmin = 0.550, Tmax = 0.722k = −12→12
19351 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0335P)2 + 0.369P] where P = (Fo2 + 2Fc2)/3
4901 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.33334 (3)0.77964 (2)0.744958 (17)0.04196 (8)
S10.11604 (9)0.33772 (8)0.79681 (7)0.0884 (3)
C10.2117 (3)0.4851 (2)0.78611 (17)0.0523 (5)
N10.2812 (2)0.5896 (2)0.77780 (16)0.0613 (5)
S2−0.15336 (6)0.99430 (6)0.72597 (4)0.05379 (13)
C20.0121 (2)0.9254 (2)0.72033 (14)0.0431 (4)
N20.1339 (2)0.8781 (2)0.71756 (15)0.0588 (5)
S110.80227 (6)0.93870 (7)1.02664 (4)0.05593 (14)
C120.6289 (2)0.8274 (2)0.94188 (15)0.0439 (4)
N130.52630 (18)0.88677 (16)0.86862 (12)0.0395 (3)
C140.5820 (2)1.0329 (2)0.87934 (15)0.0412 (4)
C150.5032 (3)1.1285 (2)0.81714 (17)0.0511 (5)
H15A0.40311.09900.76250.061*
C160.5770 (3)1.2695 (2)0.8383 (2)0.0650 (6)
H16A0.52601.33490.79680.078*
C170.7250 (4)1.3142 (3)0.9199 (2)0.0728 (7)
H17A0.77211.40910.93220.087*
C180.8037 (3)1.2210 (3)0.9829 (2)0.0666 (6)
H18A0.90291.25151.03810.080*
C190.7310 (2)1.0799 (2)0.96185 (16)0.0495 (5)
N200.6088 (2)0.6899 (2)0.95306 (15)0.0591 (5)
H20A0.52400.63340.91060.071*
H20B0.68070.65781.00270.071*
S210.44673 (11)0.79917 (8)0.43370 (5)0.0764 (2)
C220.3431 (3)0.8192 (3)0.52843 (18)0.0590 (5)
N230.4067 (2)0.76110 (17)0.61379 (13)0.0458 (4)
C240.5455 (2)0.6922 (2)0.60632 (16)0.0468 (4)
C250.6394 (3)0.6195 (2)0.6816 (2)0.0583 (5)
H25A0.61280.61180.74380.070*
C260.7738 (3)0.5585 (3)0.6631 (3)0.0790 (8)
H26A0.83790.50880.71310.095*
C270.8139 (4)0.5707 (4)0.5707 (3)0.0895 (10)
H27A0.90550.52960.55990.107*
C280.7221 (4)0.6415 (3)0.4953 (3)0.0801 (8)
H28A0.74950.64890.43330.096*
C290.5858 (3)0.7027 (2)0.51366 (18)0.0580 (5)
N300.2092 (3)0.8888 (3)0.51170 (19)0.0971 (9)
H30A0.15750.89840.55860.116*
H30B0.17410.92430.45400.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.03854 (12)0.04733 (13)0.03935 (13)0.00595 (9)0.01096 (9)0.00711 (9)
S10.0599 (4)0.0743 (4)0.1198 (6)−0.0084 (3)−0.0023 (4)0.0550 (4)
C10.0425 (10)0.0574 (11)0.0531 (12)0.0052 (9)0.0048 (8)0.0190 (9)
N10.0610 (11)0.0563 (10)0.0661 (12)−0.0027 (9)0.0190 (9)0.0155 (9)
S20.0406 (2)0.0668 (3)0.0544 (3)0.0127 (2)0.0152 (2)0.0070 (2)
C20.0407 (9)0.0515 (10)0.0338 (9)0.0031 (8)0.0079 (7)0.0053 (7)
N20.0448 (9)0.0739 (12)0.0547 (11)0.0161 (8)0.0120 (8)0.0036 (9)
S110.0412 (3)0.0730 (3)0.0447 (3)0.0075 (2)0.0039 (2)0.0007 (2)
C120.0407 (9)0.0573 (11)0.0344 (9)0.0084 (8)0.0123 (7)0.0076 (8)
N130.0372 (7)0.0487 (8)0.0335 (8)0.0062 (6)0.0115 (6)0.0077 (6)
C140.0392 (9)0.0484 (9)0.0403 (10)0.0048 (7)0.0211 (7)0.0025 (7)
C150.0553 (12)0.0523 (11)0.0507 (12)0.0096 (9)0.0230 (9)0.0094 (9)
C160.0811 (17)0.0519 (12)0.0756 (16)0.0145 (11)0.0418 (14)0.0134 (11)
C170.0772 (17)0.0495 (12)0.097 (2)−0.0037 (12)0.0448 (15)−0.0048 (13)
C180.0529 (12)0.0634 (14)0.0774 (17)−0.0043 (11)0.0255 (12)−0.0152 (12)
C190.0417 (10)0.0582 (11)0.0483 (11)0.0033 (8)0.0195 (8)−0.0032 (9)
N200.0611 (11)0.0609 (10)0.0503 (11)0.0088 (9)0.0041 (8)0.0213 (8)
S210.1069 (6)0.0854 (4)0.0525 (4)0.0214 (4)0.0440 (4)0.0158 (3)
C220.0754 (15)0.0659 (13)0.0435 (12)0.0224 (11)0.0250 (10)0.0133 (10)
N230.0508 (9)0.0488 (8)0.0403 (9)0.0130 (7)0.0164 (7)0.0072 (7)
C240.0438 (10)0.0428 (9)0.0506 (11)0.0013 (8)0.0161 (8)−0.0041 (8)
C250.0482 (11)0.0591 (12)0.0647 (14)0.0136 (9)0.0143 (10)0.0034 (10)
C260.0526 (13)0.0797 (17)0.097 (2)0.0223 (12)0.0147 (13)−0.0010 (15)
C270.0536 (15)0.097 (2)0.112 (3)0.0153 (14)0.0316 (16)−0.0227 (19)
C280.0709 (17)0.0879 (18)0.0829 (19)−0.0006 (14)0.0436 (15)−0.0206 (15)
C290.0603 (13)0.0569 (12)0.0562 (13)−0.0002 (10)0.0271 (10)−0.0092 (10)
N300.116 (2)0.142 (2)0.0636 (15)0.0820 (19)0.0421 (14)0.0543 (15)

Geometric parameters (Å, °)

Zn—N21.9482 (18)C18—C191.387 (3)
Zn—N11.9610 (18)C18—H18A0.9300
Zn—N232.0089 (16)N20—H20A0.8600
Zn—N132.0257 (15)N20—H20B0.8600
S1—C11.607 (2)S21—C221.733 (2)
C1—N11.150 (3)S21—C291.739 (3)
S2—C21.602 (2)C22—N231.315 (3)
C2—N21.160 (3)C22—N301.328 (3)
S11—C121.731 (2)N23—C241.405 (2)
S11—C191.738 (2)C24—C251.379 (3)
C12—N131.317 (2)C24—C291.387 (3)
C12—N201.337 (3)C25—C261.381 (3)
N13—C141.406 (2)C25—H25A0.9300
C14—C151.383 (3)C26—C271.386 (5)
C14—C191.396 (3)C26—H26A0.9300
C15—C161.389 (3)C27—C281.361 (5)
C15—H15A0.9300C27—H27A0.9300
C16—C171.382 (4)C28—C291.396 (3)
C16—H16A0.9300C28—H28A0.9300
C17—C181.372 (4)N30—H30A0.8600
C17—H17A0.9300N30—H30B0.8600
N2—Zn—N1109.42 (9)C18—C19—S11128.30 (19)
N2—Zn—N23108.31 (8)C14—C19—S11110.17 (15)
N1—Zn—N23110.24 (8)C12—N20—H20A120.0
N2—Zn—N13112.85 (7)C12—N20—H20B120.0
N1—Zn—N13108.15 (7)H20A—N20—H20B120.0
N23—Zn—N13107.85 (6)C22—S21—C2989.42 (11)
N1—C1—S1179.1 (2)N23—C22—N30124.7 (2)
C1—N1—Zn163.33 (19)N23—C22—S21115.26 (17)
N2—C2—S2178.5 (2)N30—C22—S21119.99 (18)
C2—N2—Zn165.33 (19)C22—N23—C24111.00 (17)
C12—S11—C1989.28 (10)C22—N23—Zn126.00 (15)
N13—C12—N20124.72 (18)C24—N23—Zn122.79 (13)
N13—C12—S11115.89 (15)C25—C24—C29120.2 (2)
N20—C12—S11119.39 (15)C25—C24—N23125.73 (19)
C12—N13—C14110.52 (16)C29—C24—N23114.10 (19)
C12—N13—Zn125.21 (13)C24—C25—C26118.8 (2)
C14—N13—Zn123.77 (12)C24—C25—H25A120.6
C15—C14—C19119.82 (18)C26—C25—H25A120.6
C15—C14—N13126.06 (18)C25—C26—C27120.5 (3)
C19—C14—N13114.12 (17)C25—C26—H26A119.7
C14—C15—C16118.4 (2)C27—C26—H26A119.7
C14—C15—H15A120.8C28—C27—C26121.4 (3)
C16—C15—H15A120.8C28—C27—H27A119.3
C17—C16—C15121.1 (2)C26—C27—H27A119.3
C17—C16—H16A119.5C27—C28—C29118.2 (3)
C15—C16—H16A119.5C27—C28—H28A120.9
C18—C17—C16121.2 (2)C29—C28—H28A120.9
C18—C17—H17A119.4C24—C29—C28120.9 (3)
C16—C17—H17A119.4C24—C29—S21110.20 (16)
C17—C18—C19118.0 (2)C28—C29—S21128.9 (2)
C17—C18—H18A121.0C22—N30—H30A120.0
C19—C18—H18A121.0C22—N30—H30B120.0
C18—C19—C14121.5 (2)H30A—N30—H30B120.0
N2—Zn—N1—C116.6 (7)N13—C14—C19—S110.15 (19)
N23—Zn—N1—C1−102.4 (7)C12—S11—C19—C18179.7 (2)
N13—Zn—N1—C1139.9 (7)C12—S11—C19—C14−0.90 (14)
N1—Zn—N2—C244.1 (7)C29—S21—C22—N230.9 (2)
N23—Zn—N2—C2164.3 (7)C29—S21—C22—N30−178.9 (2)
N13—Zn—N2—C2−76.3 (7)N30—C22—N23—C24178.5 (2)
C19—S11—C12—N131.57 (15)S21—C22—N23—C24−1.3 (3)
C19—S11—C12—N20−179.42 (17)N30—C22—N23—Zn−6.6 (4)
N20—C12—N13—C14179.31 (18)S21—C22—N23—Zn173.67 (10)
S11—C12—N13—C14−1.7 (2)N2—Zn—N23—C227.0 (2)
N20—C12—N13—Zn−8.6 (3)N1—Zn—N23—C22126.68 (19)
S11—C12—N13—Zn170.34 (8)N13—Zn—N23—C22−115.45 (19)
N2—Zn—N13—C12139.20 (15)N2—Zn—N23—C24−178.63 (14)
N1—Zn—N13—C1218.00 (17)N1—Zn—N23—C24−58.93 (16)
N23—Zn—N13—C12−101.21 (15)N13—Zn—N23—C2458.94 (15)
N2—Zn—N13—C14−49.73 (15)C22—N23—C24—C25−179.3 (2)
N1—Zn—N13—C14−170.92 (13)Zn—N23—C24—C255.6 (3)
N23—Zn—N13—C1469.87 (14)C22—N23—C24—C291.1 (3)
C12—N13—C14—C15−178.80 (18)Zn—N23—C24—C29−174.00 (14)
Zn—N13—C14—C159.0 (2)C29—C24—C25—C260.3 (3)
C12—N13—C14—C191.0 (2)N23—C24—C25—C26−179.3 (2)
Zn—N13—C14—C19−171.23 (12)C24—C25—C26—C270.3 (4)
C19—C14—C15—C160.8 (3)C25—C26—C27—C28−0.6 (5)
N13—C14—C15—C16−179.38 (18)C26—C27—C28—C290.3 (4)
C14—C15—C16—C17−0.5 (3)C25—C24—C29—C28−0.6 (3)
C15—C16—C17—C18−0.2 (4)N23—C24—C29—C28179.0 (2)
C16—C17—C18—C190.5 (4)C25—C24—C29—S21179.88 (16)
C17—C18—C19—C14−0.1 (3)N23—C24—C29—S21−0.5 (2)
C17—C18—C19—S11179.27 (18)C27—C28—C29—C240.3 (4)
C15—C14—C19—C18−0.6 (3)C27—C28—C29—S21179.8 (2)
N13—C14—C19—C18179.61 (18)C22—S21—C29—C24−0.17 (17)
C15—C14—C19—S11179.95 (14)C22—S21—C29—C28−179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N20—H20A···N10.862.243.027 (3)152
N20—H20B···S1i0.862.703.5015 (19)156
N30—H30A···N20.862.213.002 (3)152
N30—H30B···S2ii0.862.573.404 (2)162

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2521).

References

  • Balch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem.32, 2901–2905.
  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev.98, 1375–1406. [PubMed]
  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem.36, 5016–5021.
  • Costes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem.30, 1887–1892.
  • Iwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643–690. Oxford: Pergamon Press.
  • Kim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol.21, 562–568.
  • Kim, I. H., Suh, S. W., Kim, C. H., Kim, J. G. & Suh, I. H. (2001). Korean J. Crystallogr.12, 207–211.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol.18, 391–395.
  • Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.
  • Vrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225–244. Oxford: Pergamon Press.
  • Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem.57, 321–327.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography