PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2234.
Published online 2009 August 26. doi:  10.1107/S1600536809033169
PMCID: PMC2969944

2-(4-Methyl­anilino)acetohydrazide

Abstract

In the title mol­ecule, C9H13N3O, the non-hydrogen atoms of the hydrazide group are essentially planar [maximum deviation = 0.028 (1) Å for one of the N atoms]. The mean plane of this group forms a dihedral angle of 83.34 (5)° with the plane of the benzene ring. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)O, N—H(...)N and weak C—H(...)N hydrogen bonds into a two-dimensional network parallel to the ab plane. Additional stabilization is provided by a weak C—H(...)π inter­action.

Related literature

For the biological activity of hydrazide derivatives, see: Ozdemir et al. (2009 [triangle]); Khattab (2005 [triangle]). For synthetic applications, see: Isloor et al. (2009 [triangle]); Holla & Udupa (1992 [triangle]). For a related structure, see: Zhang & Shi (2009 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2234-scheme1.jpg

Experimental

Crystal data

  • C9H13N3O
  • M r = 179.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2234-efi1.jpg
  • a = 5.1481 (1) Å
  • b = 5.9262 (2) Å
  • c = 15.4756 (4) Å
  • α = 87.002 (2)°
  • β = 84.282 (2)°
  • γ = 82.849 (2)°
  • V = 465.76 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.52 × 0.15 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.956, T max = 0.994
  • 11697 measured reflections
  • 2703 independent reflections
  • 2301 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.03
  • 2703 reflections
  • 170 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033169/lh2884sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033169/lh2884Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship. AMI is grateful to the Head of the Department of Chemistry and Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

In organic chemistry, hydrazides are a class of organic compounds sharing a common functional group characterized by a nitrogen to nitrogen covalent bond with 4 substituents with at least one of them being an acyl group. They are also starting materials for many heterocycles including 1,2,4-triazoles (Isloor et al., 2009; Holla & Udupa, 1992). Many hydrazide derivatives have showed significant biological activities (Ozdemir et al., 2009; Khattab, 2005). In view of the biological and synthetic importance of hydrazides, we hereby report the crystal structure of the title compound (I).

The bond lengths and angles of the title compound (I), (Fig. 1) are comparable to its related structure (Zhang & Shi, 2009). A maximum deviation of 0.028 (1) Å for atom N2 from the mean plane of the hydrazide group form by atoms O1, N2, N3, C7 and C8 indicates that it is essentially coplanar. The mean plane of the hydrazide makes dihedral angle of 83.34 (5)° with C1–C6 benzene ring. In the crystal structure, the molecules are linked by intermolecular N1—H1N1···O1i, N2—H1N2···N3ii, N3—H1N3···O1iii, N3—H2N3···O1iv and C7—H7B···N3v (see Table 1 for symmetry codes) hydrogen bonds into two-dimensional network parallel to ab plane (Fig. 2, Table 1). The crystal structure is also stabilized by a C—H···π interaction (Table 1).

Experimental

Ethyl [(4-methylphenyl)amino]acetate (19.3 g, 0.1 mol) and hydrazine hydrate (99%, 0.2 mol) in ethanol (200 ml) was heated on a water-bath for 6 h. Excess of ethanol was removed by distillation. On cooling, colourless block-shaped single crystals of 2-[(4-methylphenyl)amino]acetohydrazide begin to separate (Holla & Udupa, 1992). It was collected by filtration and recrystallized from ethanol. Yield: 13.2 g, 73.7%, M.p. 423–426 K.

Refinement

All hydrogen atoms were located from the difference Fourier map and refined freely, with N—H = 0.876 (15)–0.912 (15) Å; C–H = 0.96 (2)–1.04 (2) Å.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
Part of the crystal structure of (I), viewed along the b axis, showing the two-dimensional network parallel to ab plane. Intermolecular hydrogen bonds are shown in as dashed lines.

Crystal data

C9H13N3OZ = 2
Mr = 179.22F(000) = 192
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1481 (1) ÅCell parameters from 6230 reflections
b = 5.9262 (2) Åθ = 2.7–31.2°
c = 15.4756 (4) ŵ = 0.09 mm1
α = 87.002 (2)°T = 100 K
β = 84.282 (2)°Block, colourless
γ = 82.849 (2)°0.52 × 0.15 × 0.07 mm
V = 465.76 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2703 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→7
Tmin = 0.956, Tmax = 0.994k = −8→8
11697 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1344P] where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.63005 (14)0.15409 (11)0.39934 (5)0.01915 (17)
N10.43188 (17)0.74133 (14)0.33320 (6)0.01783 (18)
N20.26039 (16)0.39523 (13)0.43209 (5)0.01650 (18)
N30.12716 (17)0.23345 (14)0.48445 (6)0.01765 (18)
C10.1124 (2)0.95874 (17)0.24809 (7)0.0231 (2)
C2−0.0573 (2)0.9751 (2)0.18340 (8)0.0282 (2)
C3−0.0748 (2)0.7920 (2)0.13190 (7)0.0280 (2)
C40.0857 (2)0.5915 (2)0.14806 (7)0.0257 (2)
C50.2577 (2)0.57064 (17)0.21309 (7)0.0208 (2)
C60.27314 (19)0.75502 (16)0.26432 (6)0.01770 (19)
C70.62171 (19)0.54434 (16)0.34553 (7)0.01795 (19)
C80.50373 (18)0.34635 (15)0.39460 (6)0.01517 (18)
C9−0.2624 (3)0.8132 (3)0.06212 (9)0.0405 (3)
H1A0.116 (3)1.091 (3)0.2848 (10)0.031 (4)*
H2A−0.167 (3)1.117 (3)0.1751 (11)0.042 (4)*
H4A0.081 (3)0.457 (3)0.1131 (10)0.032 (4)*
H5A0.363 (3)0.424 (3)0.2235 (10)0.031 (4)*
H7A0.713 (3)0.484 (2)0.2916 (9)0.024 (3)*
H7B0.757 (3)0.592 (2)0.3797 (9)0.026 (3)*
H9A−0.199 (4)0.895 (4)0.0098 (14)0.070 (6)*
H9B−0.435 (4)0.878 (3)0.0840 (13)0.064 (6)*
H9C−0.290 (4)0.655 (4)0.0400 (14)0.072 (6)*
H1N10.485 (3)0.869 (3)0.3461 (9)0.029 (4)*
H1N20.185 (3)0.538 (3)0.4343 (9)0.028 (3)*
H1N30.250 (3)0.125 (2)0.5030 (9)0.023 (3)*
H2N30.031 (3)0.167 (2)0.4485 (9)0.028 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0173 (3)0.0139 (3)0.0257 (4)0.0010 (2)−0.0024 (3)−0.0012 (3)
N10.0208 (4)0.0112 (3)0.0219 (4)−0.0032 (3)−0.0028 (3)−0.0005 (3)
N20.0155 (4)0.0110 (3)0.0223 (4)−0.0013 (3)0.0001 (3)0.0014 (3)
N30.0159 (4)0.0135 (4)0.0233 (4)−0.0029 (3)−0.0015 (3)0.0035 (3)
C10.0247 (5)0.0183 (5)0.0246 (5)0.0002 (4)0.0004 (4)0.0021 (4)
C20.0246 (5)0.0294 (6)0.0277 (6)0.0031 (4)−0.0008 (4)0.0081 (4)
C30.0224 (5)0.0410 (6)0.0209 (5)−0.0083 (4)−0.0023 (4)0.0072 (4)
C40.0274 (5)0.0303 (5)0.0210 (5)−0.0109 (4)−0.0013 (4)−0.0011 (4)
C50.0225 (5)0.0183 (4)0.0216 (5)−0.0041 (3)−0.0006 (4)−0.0007 (3)
C60.0178 (4)0.0160 (4)0.0189 (4)−0.0033 (3)0.0006 (3)0.0015 (3)
C70.0156 (4)0.0158 (4)0.0222 (5)−0.0027 (3)−0.0004 (3)0.0010 (3)
C80.0156 (4)0.0140 (4)0.0165 (4)−0.0020 (3)−0.0032 (3)−0.0019 (3)
C90.0291 (7)0.0679 (10)0.0258 (6)−0.0130 (6)−0.0079 (5)0.0127 (6)

Geometric parameters (Å, °)

O1—C81.2421 (11)C2—H2A0.962 (17)
N1—C61.3995 (13)C3—C41.3867 (17)
N1—C71.4437 (12)C3—C91.5094 (17)
N1—H1N10.876 (15)C4—C51.3961 (15)
N2—C81.3313 (12)C4—H4A0.988 (15)
N2—N31.4205 (11)C5—C61.3978 (14)
N2—H1N20.886 (15)C5—H5A0.979 (15)
N3—H1N30.902 (14)C7—C81.5213 (13)
N3—H2N30.912 (15)C7—H7A0.978 (14)
C1—C21.3850 (16)C7—H7B0.989 (14)
C1—C61.4022 (13)C9—H9A0.97 (2)
C1—H1A0.993 (15)C9—H9B0.96 (2)
C2—C31.3963 (18)C9—H9C1.04 (2)
C6—N1—C7120.37 (8)C4—C5—C6120.25 (10)
C6—N1—H1N1115.9 (10)C4—C5—H5A119.3 (9)
C7—N1—H1N1113.7 (10)C6—C5—H5A120.4 (9)
C8—N2—N3122.60 (8)C5—C6—N1122.90 (9)
C8—N2—H1N2120.9 (10)C5—C6—C1118.06 (10)
N3—N2—H1N2115.5 (10)N1—C6—C1118.97 (9)
N2—N3—H1N3107.5 (9)N1—C7—C8113.36 (8)
N2—N3—H2N3106.4 (9)N1—C7—H7A114.3 (8)
H1N3—N3—H2N3107.4 (12)C8—C7—H7A106.5 (8)
C2—C1—C6120.65 (10)N1—C7—H7B107.1 (8)
C2—C1—H1A119.7 (9)C8—C7—H7B108.4 (8)
C6—C1—H1A119.6 (9)H7A—C7—H7B107.0 (12)
C1—C2—C3121.82 (10)O1—C8—N2123.22 (9)
C1—C2—H2A118.2 (10)O1—C8—C7121.37 (9)
C3—C2—H2A120.0 (10)N2—C8—C7115.40 (8)
C4—C3—C2117.19 (10)C3—C9—H9A113.1 (13)
C4—C3—C9121.88 (12)C3—C9—H9B111.3 (12)
C2—C3—C9120.92 (12)H9A—C9—H9B111.5 (17)
C3—C4—C5122.03 (10)C3—C9—H9C112.3 (12)
C3—C4—H4A120.2 (9)H9A—C9—H9C103.7 (17)
C5—C4—H4A117.8 (9)H9B—C9—H9C104.4 (17)
C6—C1—C2—C3−0.26 (17)C7—N1—C6—C1−172.79 (9)
C1—C2—C3—C4−0.06 (17)C2—C1—C6—C50.35 (15)
C1—C2—C3—C9179.61 (11)C2—C1—C6—N1−176.67 (9)
C2—C3—C4—C50.28 (16)C6—N1—C7—C8−83.08 (11)
C9—C3—C4—C5−179.38 (11)N3—N2—C8—O12.92 (14)
C3—C4—C5—C6−0.19 (16)N3—N2—C8—C7−176.34 (8)
C4—C5—C6—N1176.77 (9)N1—C7—C8—O1169.09 (8)
C4—C5—C6—C1−0.13 (15)N1—C7—C8—N2−11.63 (12)
C7—N1—C6—C510.34 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.875 (17)2.162 (17)3.0271 (11)170.0 (13)
N2—H1N2···N3ii0.887 (17)2.287 (16)3.0302 (12)141.3 (13)
N3—H1N3···O1iii0.901 (14)2.252 (13)3.0614 (11)149.4 (13)
N3—H2N3···O1iv0.914 (14)2.281 (15)3.0889 (12)147.1 (12)
C7—H7B···N3v0.991 (15)2.545 (14)3.4341 (14)149.2 (11)
C9—H9B···Cgiv0.96 (2)2.94 (2)3.7469 (16)142.3 (14)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2884).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Holla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305–318. [PubMed]
  • Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem.44, 3784–3787. [PubMed]
  • Khattab, S. N. (2005). Molecules, 10, 1218–1228. [PubMed]
  • Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhibit. Med. Chem.24, 825–831. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography