PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1142–m1143.
Published online 2009 August 29. doi:  10.1107/S1600536809033625
PMCID: PMC2969941

(Benzoato-κO)chlorido[(–)-sparteine-κ2 N,N′]zinc(II)

Abstract

The title complex, [Zn(C7H5O2)Cl(C15H26N2)], used for the magnetic dilution of the analogous CuII complex, was synthesized through a direct synthesis route. The coordination geometry around ZnII is best described as distorted tetra­hedral, the largest deviation arising from the (–)-sparteine ligand, as is invariably found in complexes containing this rather rigid mol­ecule. The benzoate anion behaves as a monodentate ligand, with a non-coordinating Zn(...)O separation of 2.969 (5) Å. Mol­ecules are packed in the crystal without significant inter­molecular inter­actions. The shortest Zn(...)Zn separation [6.8186 (7) Å] is observed between mol­ecules related through the 21 screw axis. This is an important feature for the magnetic behaviour of the CuII analogue, which is intended for modeling isolated metal centers in the active site of type 1 blue copper proteins.

Related literature

For related ZnII and CuII complexes bearing sparteine as ligand, see: Alcántara-Flores, Bernès et al. (2003 [triangle]); Alcántara-Flores, Vázquez-Bravo et al. (2003 [triangle]); Jasiewicz et al. (2005 [triangle]); Lee et al. (2002 [triangle]): Reyes-Ortega et al. (2006 [triangle]). For the κO-coord­ination mode of benzoate, see: Shanmuga Sundara Raj et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1142-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H5O2)Cl(C15H26N2)]
  • M r = 456.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1142-efi1.jpg
  • a = 8.7784 (9) Å
  • b = 11.8238 (13) Å
  • c = 10.8438 (11) Å
  • β = 109.671 (8)°
  • V = 1059.84 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 296 K
  • 0.34 × 0.26 × 0.04 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.760, T max = 0.951
  • 3583 measured reflections
  • 2166 independent reflections
  • 1812 reflections with I > 2σ(I)
  • R int = 0.033
  • 2 standard reflections every 48 reflections intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.069
  • S = 1.01
  • 2166 reflections
  • 254 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.31 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 199 Friedel pairs
  • Flack parameter: −0.001 (16)

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033625/kj2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033625/kj2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The present work has been supported by Secretaría de Educación Pública, Sub-Secretaría de Educación Superior and Vicerrectoría de Investigación y Estudios de Posgrado from BUAP, project 52/NAT/06-I.

supplementary crystallographic information

Comment

The search for suitable structural, spectroscopic and magnetic models for type 1 blue copper proteins remains an active field. The title complex deals with such researches; it was first obtained as a by-product during the magnetic dilution of the analogous CuII complex. Unfortunately, although we accumulated a number of spectroscopic and magnetic data for the CuII complex, we were unable to get suitable single crystals for its accurate X-ray structural characterization. The structure of the title ZnII complex is, however, a first approach for solving this problem.

The title ZnII complex crystallizes in a chiral space group with the molecule placed in a general position. The (–)-sparteine ligand has the expected RSSS absolute configuration and coordinates to the ZnII ion trough N atoms. A benzoate ligand is κO-bonded by a single O atom, a mode of coordination documented for ZnII complexes, albeit not very common (Shanmuga Sundara Raj et al., 2000). The non-bonding Zn···O intramolecular separation, 2.969 (5) Å, makes clear that (I) is a four-coordinated complex. The last coordination site is occupied by a Cl- ion, at the expected distance. The local geometry around Zn is better described as tetrahedral distorted (Fig. 1), the largest deviation arising from the (–)-sparteine ligand, as invariably found in complexes containing this rather rigid molecule. The dihedral angle between N1/Zn1/N16 and Cl1/Zn1/O2 planes is 87.25 (12)°, reflecting the steric hindrance of the sparteine ligand.

The title complex is closely related to paramagnetic CuII complexes [Cu((–)sparteine)(PhCOO)X], for which we reported X-ray structures (X = Cl: Alcántara-Flores, Vázquez-Bravo et al., 2003; X = Br: Reyes-Ortega et al., 2006). However, CuII complexes are clearly five-coordinated species, with the benzoate behaving as a bidentate κ2O,O'-ligand. This difference is consistent with an atomic radius larger for CuII than for ZnII, and with a further electron withdrawing capacity for the d9 metal ion compared to d10 ions. Finally, it should be mentioned that with ZnII as metal center, sparteine-containing complexes more symmetrical than the title complex have been obtained, by coordinating two identical carboxylato-κ1O ligands or by using α-isosparteine (e.g. Jasiewicz et al., 2005).

In the crystal structure, the molecules pack at van der Waals distances into two different alternating layers (A and B, see Fig. 2) parallel to the plane (010). All molecules in a layer have the same spatial orientation. Neighboring A and B layers are related by a twofold screw 21 axis. An important criterion for the use of these molecules as models for the active site in type 1 copper proteins is the metal-metal separation, which should be as long as possible, in order to mimic magnetically isolated CuII centers in the native proteins. In the case of the title complex, this distance is 6.8186 (7) Å, and is thus intermediate between separations found in dimorphic dibromo-[(–)-sparteine]-zinc(II) complex, for which metal separations were observed at 6.534 Å (orthorhombic polymorph: Lee et al., 2002) or 7.4715 (6) Å (triclinic polymorph: Alcántara-Flores, Bernès et al., 2003).

Experimental

Equimolar amounts (1.5 mmol) of zinc powder, (–)-sparteine, benzoyl chloride and DMSO (4.5 ml) were placed in a flask and the mixture was kept under magnetic stirring at 338 K for 8 h. The reaction mixture was then filtered and allowed to stand for 26 days at room temperature, after which a solid material, identified as the title complex, was filtered off (25% yield) and recrystallized from methanol. M.p. 459–461 K. A complete spectroscopic characterization was carried out, which is in agreement with the X-ray structure (see archived CIF).

Refinement

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2), and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier atom). The absolute configuration was assigned by refinement of a Flack parameter, and agrees the chirality expected from the synthetic route.

Figures

Fig. 1.
The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
A part of the crystal structure of the title compound, viewed down [100]. The color scheme is used for the sake of clarity and H atoms have been omitted.

Crystal data

[Zn(C7H5O2)Cl(C15H26N2)]F(000) = 480
Mr = 456.31Dx = 1.430 Mg m3
Monoclinic, P21Melting point = 459–461 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.7784 (9) ÅCell parameters from 49 reflections
b = 11.8238 (13) Åθ = 3.7–10.8°
c = 10.8438 (11) ŵ = 1.31 mm1
β = 109.671 (8)°T = 296 K
V = 1059.84 (19) Å3Plate, colourless
Z = 20.34 × 0.26 × 0.04 mm

Data collection

Bruker P4 diffractometer1812 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 25.0°, θmin = 2.0°
ω scansh = −10→5
Absorption correction: ψ scan (XSCANS; Siemens, 1996)k = −14→1
Tmin = 0.760, Tmax = 0.951l = −12→12
3583 measured reflections2 standard reflections every 48 reflections
2166 independent reflections intensity decay: 1.5%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033w = 1/[σ2(Fo2) + (0.0305P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.36 e Å3
2166 reflectionsΔρmin = −0.30 e Å3
254 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0038 (9)
0 constraintsAbsolute structure: Flack (1983), 199 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.001 (16)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.35428 (6)0.83945 (5)0.07075 (4)0.03626 (17)
Cl10.59957 (15)0.88938 (12)0.07478 (13)0.0568 (4)
O10.1273 (6)0.8988 (4)−0.1933 (5)0.0736 (14)
O20.2371 (4)0.7472 (3)−0.0791 (3)0.0593 (10)
N10.2098 (5)0.9334 (3)0.1500 (4)0.0395 (10)
C20.1470 (6)1.0382 (5)0.0733 (5)0.0561 (15)
H2B0.07281.07570.10900.067*
H2C0.08741.0180−0.01680.067*
C30.2813 (8)1.1188 (5)0.0761 (7)0.0694 (18)
H3B0.23531.18650.02710.083*
H3C0.35111.08360.03430.083*
C40.3824 (8)1.1517 (5)0.2180 (7)0.0728 (19)
H4B0.47511.19640.21830.087*
H4C0.31731.19670.25620.087*
C50.4390 (6)1.0444 (5)0.2981 (6)0.0540 (14)
H5A0.51531.00510.26610.065*
H5B0.49491.06480.38880.065*
C60.2997 (6)0.9655 (4)0.2909 (5)0.0439 (12)
H6C0.22391.00880.32120.053*
C70.3460 (5)0.8603 (4)0.3779 (4)0.0414 (14)
H7B0.40030.88630.46790.050*
C80.1909 (6)0.8004 (5)0.3750 (5)0.0534 (14)
H8C0.21530.73820.43690.064*
H8D0.11930.85270.39770.064*
C90.1123 (6)0.7570 (4)0.2361 (5)0.0448 (12)
H9A0.01110.71950.23200.054*
C100.0684 (5)0.8584 (5)0.1438 (5)0.0473 (15)
H10A0.01960.83110.05480.057*
H10B−0.01210.90340.16470.057*
C110.2198 (5)0.6685 (4)0.2039 (5)0.0396 (12)
H11A0.16850.64910.11120.047*
C120.2309 (6)0.5589 (5)0.2815 (5)0.0481 (13)
H12A0.27170.57610.37440.058*
H12B0.12330.52720.26140.058*
C130.3404 (7)0.4711 (5)0.2515 (6)0.0583 (15)
H13A0.35030.40580.30780.070*
H13B0.29360.44630.16130.070*
C140.5068 (7)0.5220 (5)0.2737 (5)0.0523 (14)
H14A0.57440.46770.24920.063*
H14B0.55800.53990.36580.063*
C150.4904 (6)0.6294 (4)0.1917 (4)0.0389 (11)
H15A0.59710.66160.20860.047*
H15B0.44810.60900.09970.047*
N160.3824 (4)0.7178 (3)0.2180 (3)0.0312 (8)
C170.4586 (5)0.7755 (4)0.3460 (4)0.0400 (11)
H17A0.55510.81470.34470.048*
H17B0.49150.71900.41480.048*
C180.0832 (5)0.7189 (4)−0.2985 (4)0.0352 (11)
C190.1471 (6)0.6117 (4)−0.2996 (5)0.0427 (12)
H19A0.23130.5866−0.22690.051*
C200.0874 (6)0.5418 (5)−0.4072 (5)0.0517 (14)
H20A0.13220.4705−0.40670.062*
C21−0.0384 (6)0.5774 (6)−0.5152 (6)0.0551 (16)
H21C−0.07830.5305−0.58780.066*
C22−0.1042 (6)0.6824 (6)−0.5147 (5)0.0584 (16)
H22C−0.19060.7056−0.58710.070*
C23−0.0445 (5)0.7555 (5)−0.4080 (4)0.0475 (13)
H23C−0.08880.8271−0.40970.057*
C240.1522 (7)0.7978 (6)−0.1842 (6)0.0446 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0429 (3)0.0340 (3)0.0326 (2)0.0013 (3)0.01358 (19)0.0000 (3)
Cl10.0589 (8)0.0505 (7)0.0747 (8)−0.0089 (7)0.0404 (7)−0.0045 (7)
O10.100 (4)0.049 (3)0.059 (3)0.014 (3)0.010 (2)−0.010 (2)
O20.078 (2)0.055 (2)0.0324 (18)0.005 (2)0.0018 (17)−0.0018 (18)
N10.044 (2)0.032 (2)0.041 (2)0.006 (2)0.0127 (19)−0.0016 (19)
C20.066 (4)0.046 (3)0.059 (3)0.022 (3)0.024 (3)0.005 (3)
C30.097 (5)0.035 (3)0.089 (5)0.016 (3)0.048 (4)0.016 (3)
C40.091 (5)0.037 (4)0.102 (5)−0.004 (4)0.048 (4)−0.009 (4)
C50.065 (4)0.042 (3)0.057 (3)−0.008 (3)0.022 (3)−0.017 (3)
C60.055 (3)0.035 (3)0.044 (3)0.002 (3)0.021 (3)−0.009 (2)
C70.057 (3)0.041 (4)0.028 (2)−0.004 (2)0.0160 (19)−0.010 (2)
C80.073 (3)0.044 (3)0.057 (3)−0.002 (3)0.039 (3)−0.004 (2)
C90.038 (3)0.043 (3)0.057 (3)−0.006 (2)0.021 (2)−0.008 (3)
C100.037 (2)0.045 (4)0.060 (3)0.003 (2)0.018 (2)0.002 (3)
C110.036 (3)0.044 (3)0.037 (3)−0.010 (2)0.011 (2)−0.006 (2)
C120.052 (3)0.039 (3)0.054 (3)−0.015 (3)0.019 (3)0.001 (2)
C130.082 (4)0.036 (3)0.058 (3)−0.010 (3)0.025 (3)0.002 (3)
C140.066 (4)0.041 (3)0.050 (3)0.013 (3)0.019 (3)0.010 (3)
C150.047 (3)0.036 (3)0.036 (2)0.004 (2)0.018 (2)−0.001 (2)
N160.035 (2)0.030 (2)0.0298 (18)−0.0029 (18)0.0128 (16)−0.0057 (16)
C170.047 (3)0.041 (3)0.026 (2)−0.005 (2)0.004 (2)−0.005 (2)
C180.031 (3)0.049 (3)0.025 (2)−0.005 (2)0.008 (2)0.000 (2)
C190.043 (3)0.043 (3)0.040 (3)0.003 (2)0.012 (2)0.003 (2)
C200.055 (3)0.049 (3)0.057 (3)−0.005 (3)0.027 (3)−0.009 (3)
C210.047 (4)0.073 (5)0.047 (4)−0.018 (4)0.019 (3)−0.019 (3)
C220.039 (3)0.091 (5)0.037 (3)−0.003 (3)0.003 (2)−0.001 (3)
C230.041 (3)0.057 (3)0.043 (3)0.008 (3)0.012 (2)0.006 (3)
C240.049 (3)0.046 (3)0.039 (3)0.003 (3)0.015 (3)0.000 (3)

Geometric parameters (Å, °)

Zn1—O21.940 (3)C10—H10A0.9700
Zn1—N12.077 (4)C10—H10B0.9700
Zn1—N162.101 (4)C11—N161.501 (6)
Zn1—Cl12.2189 (13)C11—C121.530 (7)
O1—C241.213 (6)C11—H11A0.9800
O2—C241.280 (7)C12—C131.523 (7)
N1—C21.491 (6)C12—H12A0.9700
N1—C101.509 (6)C12—H12B0.9700
N1—C61.514 (6)C13—C141.522 (7)
C2—C31.508 (8)C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C2—H2C0.9700C14—C151.529 (7)
C3—C41.545 (9)C14—H14A0.9700
C3—H3B0.9700C14—H14B0.9700
C3—H3C0.9700C15—N161.502 (6)
C4—C51.522 (9)C15—H15A0.9700
C4—H4B0.9700C15—H15B0.9700
C4—H4C0.9700N16—C171.488 (5)
C5—C61.519 (7)C17—H17A0.9700
C5—H5A0.9700C17—H17B0.9700
C5—H5B0.9700C18—C191.387 (7)
C6—C71.532 (7)C18—C231.399 (6)
C6—H6C0.9800C18—C241.506 (8)
C7—C81.526 (7)C19—C201.381 (7)
C7—C171.527 (6)C19—H19A0.9300
C7—H7B0.9800C20—C211.377 (8)
C8—C91.520 (7)C20—H20A0.9300
C8—H8C0.9700C21—C221.370 (9)
C8—H8D0.9700C21—H21C0.9300
C9—C101.526 (7)C22—C231.397 (8)
C9—C111.527 (7)C22—H22C0.9300
C9—H9A0.9800C23—H23C0.9300
O2—Zn1—N1114.94 (15)C9—C10—H10B108.7
O2—Zn1—N1698.37 (14)H10A—C10—H10B107.6
N1—Zn1—N1689.06 (14)N16—C11—C9110.5 (4)
O2—Zn1—Cl1113.80 (12)N16—C11—C12113.0 (4)
N1—Zn1—Cl1124.97 (12)C9—C11—C12112.6 (4)
N16—Zn1—Cl1107.58 (10)N16—C11—H11A106.8
C24—O2—Zn1118.0 (4)C9—C11—H11A106.8
C2—N1—C10108.6 (4)C12—C11—H11A106.8
C2—N1—C6108.9 (4)C13—C12—C11112.8 (4)
C10—N1—C6109.5 (4)C13—C12—H12A109.0
C2—N1—Zn1112.1 (3)C11—C12—H12A109.0
C10—N1—Zn1106.0 (3)C13—C12—H12B109.0
C6—N1—Zn1111.6 (3)C11—C12—H12B109.0
N1—C2—C3112.0 (4)H12A—C12—H12B107.8
N1—C2—H2B109.2C14—C13—C12109.7 (4)
C3—C2—H2B109.2C14—C13—H13A109.7
N1—C2—H2C109.2C12—C13—H13A109.7
C3—C2—H2C109.2C14—C13—H13B109.7
H2B—C2—H2C107.9C12—C13—H13B109.7
C2—C3—C4111.2 (5)H13A—C13—H13B108.2
C2—C3—H3B109.4C13—C14—C15109.8 (4)
C4—C3—H3B109.4C13—C14—H14A109.7
C2—C3—H3C109.4C15—C14—H14A109.7
C4—C3—H3C109.4C13—C14—H14B109.7
H3B—C3—H3C108.0C15—C14—H14B109.7
C5—C4—C3109.1 (5)H14A—C14—H14B108.2
C5—C4—H4B109.9N16—C15—C14114.2 (4)
C3—C4—H4B109.9N16—C15—H15A108.7
C5—C4—H4C109.9C14—C15—H15A108.7
C3—C4—H4C109.9N16—C15—H15B108.7
H4B—C4—H4C108.3C14—C15—H15B108.7
C6—C5—C4112.3 (5)H15A—C15—H15B107.6
C6—C5—H5A109.1C17—N16—C11112.8 (3)
C4—C5—H5A109.1C17—N16—C15112.5 (3)
C6—C5—H5B109.1C11—N16—C15110.4 (3)
C4—C5—H5B109.1C17—N16—Zn1107.2 (3)
H5A—C5—H5B107.9C11—N16—Zn1108.9 (3)
N1—C6—C5110.0 (4)C15—N16—Zn1104.6 (3)
N1—C6—C7111.0 (4)N16—C17—C7113.0 (4)
C5—C6—C7115.2 (4)N16—C17—H17A109.0
N1—C6—H6C106.7C7—C17—H17A109.0
C5—C6—H6C106.7N16—C17—H17B109.0
C7—C6—H6C106.7C7—C17—H17B109.0
C8—C7—C17109.4 (4)H17A—C17—H17B107.8
C8—C7—C6108.3 (4)C19—C18—C23119.1 (4)
C17—C7—C6116.8 (4)C19—C18—C24121.4 (4)
C8—C7—H7B107.3C23—C18—C24119.5 (5)
C17—C7—H7B107.3C20—C19—C18120.9 (5)
C6—C7—H7B107.3C20—C19—H19A119.5
C9—C8—C7106.4 (4)C18—C19—H19A119.5
C9—C8—H8C110.5C21—C20—C19120.2 (6)
C7—C8—H8C110.5C21—C20—H20A119.9
C9—C8—H8D110.5C19—C20—H20A119.9
C7—C8—H8D110.5C22—C21—C20119.5 (5)
H8C—C8—H8D108.6C22—C21—H21C120.3
C8—C9—C10108.3 (4)C20—C21—H21C120.3
C8—C9—C11110.4 (4)C21—C22—C23121.5 (5)
C10—C9—C11115.3 (4)C21—C22—H22C119.3
C8—C9—H9A107.5C23—C22—H22C119.3
C10—C9—H9A107.5C22—C23—C18118.8 (5)
C11—C9—H9A107.5C22—C23—H23C120.6
N1—C10—C9114.2 (4)C18—C23—H23C120.6
N1—C10—H10A108.7O1—C24—O2124.5 (6)
C9—C10—H10A108.7O1—C24—C18122.2 (6)
N1—C10—H10B108.7O2—C24—C18113.3 (5)
N1—Zn1—O2—C2465.5 (4)N16—C11—C12—C13−52.9 (5)
N16—Zn1—O2—C24158.3 (4)C9—C11—C12—C13−179.0 (4)
Cl1—Zn1—O2—C24−88.2 (4)C11—C12—C13—C1454.9 (6)
O2—Zn1—N1—C2−79.6 (3)C12—C13—C14—C15−55.7 (6)
N16—Zn1—N1—C2−178.4 (3)C13—C14—C15—N1657.1 (5)
Cl1—Zn1—N1—C270.6 (3)C9—C11—N16—C1750.9 (5)
O2—Zn1—N1—C1038.7 (3)C12—C11—N16—C17−76.3 (5)
N16—Zn1—N1—C10−60.1 (3)C9—C11—N16—C15177.7 (4)
Cl1—Zn1—N1—C10−171.0 (2)C12—C11—N16—C1550.5 (5)
O2—Zn1—N1—C6157.9 (3)C9—C11—N16—Zn1−68.0 (4)
N16—Zn1—N1—C659.1 (3)C12—C11—N16—Zn1164.8 (3)
Cl1—Zn1—N1—C6−51.9 (3)C14—C15—N16—C1773.2 (5)
C10—N1—C2—C3179.2 (4)C14—C15—N16—C11−53.7 (5)
C6—N1—C2—C360.0 (5)C14—C15—N16—Zn1−170.7 (3)
Zn1—N1—C2—C3−64.0 (5)O2—Zn1—N16—C17−174.8 (3)
N1—C2—C3—C4−57.7 (6)N1—Zn1—N16—C17−59.8 (3)
C2—C3—C4—C553.0 (7)Cl1—Zn1—N16—C1766.8 (3)
C3—C4—C5—C6−54.2 (7)O2—Zn1—N16—C11−52.6 (3)
C2—N1—C6—C5−59.4 (5)N1—Zn1—N16—C1162.5 (3)
C10—N1—C6—C5−178.0 (4)Cl1—Zn1—N16—C11−170.9 (2)
Zn1—N1—C6—C564.9 (4)O2—Zn1—N16—C1565.5 (3)
C2—N1—C6—C7172.0 (4)N1—Zn1—N16—C15−179.4 (3)
C10—N1—C6—C753.3 (5)Cl1—Zn1—N16—C15−52.8 (3)
Zn1—N1—C6—C7−63.7 (4)C11—N16—C17—C7−50.6 (5)
C4—C5—C6—N158.4 (6)C15—N16—C17—C7−176.3 (4)
C4—C5—C6—C7−175.3 (4)Zn1—N16—C17—C769.2 (4)
N1—C6—C7—C8−62.6 (5)C8—C7—C17—N1656.5 (5)
C5—C6—C7—C8171.5 (4)C6—C7—C17—N16−67.0 (5)
N1—C6—C7—C1761.4 (5)C23—C18—C19—C200.6 (7)
C5—C6—C7—C17−64.4 (5)C24—C18—C19—C20−177.3 (5)
C17—C7—C8—C9−61.8 (5)C18—C19—C20—C21−0.6 (8)
C6—C7—C8—C966.6 (5)C19—C20—C21—C22−0.3 (8)
C7—C8—C9—C10−63.1 (5)C20—C21—C22—C231.3 (9)
C7—C8—C9—C1164.1 (5)C21—C22—C23—C18−1.4 (8)
C2—N1—C10—C9−170.5 (4)C19—C18—C23—C220.4 (7)
C6—N1—C10—C9−51.7 (5)C24—C18—C23—C22178.3 (5)
Zn1—N1—C10—C968.8 (4)Zn1—O2—C24—O1−7.4 (9)
C8—C9—C10—N157.6 (5)Zn1—O2—C24—C18173.0 (3)
C11—C9—C10—N1−66.7 (5)C19—C18—C24—O1161.3 (6)
C8—C9—C11—N16−58.9 (5)C23—C18—C24—O1−16.6 (9)
C10—C9—C11—N1664.3 (5)C19—C18—C24—O2−19.1 (7)
C8—C9—C11—C1268.5 (5)C23—C18—C24—O2163.1 (5)
C10—C9—C11—C12−168.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2131).

References

  • Alcántara-Flores, J. L., Bernès, S., Reyes-Ortega, Y. & Zamorano-Ulloa, R. (2003). Acta Cryst. C59, m79–m81. [PubMed]
  • Alcántara-Flores, J. L., Vázquez-Bravo, J. J., Gutiérrez-Pérez, R., Ramírez-Rosales, D., Bernès, S., Pérez-Ramírez, J. G., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2003). J. Mol. Struct.657, 137–143.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jasiewicz, B., Boczon, W., Warzajtis, B., Rychlewska, U. & Rafalowicz, T. (2005). J. Mol. Struct 753, 45–52.
  • Lee, Y.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2002). Acta Cryst. C58, m453–m454. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Reyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Gutiérrez-Pérez, R., Ramírez-Rosales, D., Bernès, S., Cabrera-Vivas, B. M., Durán-Hernández, A. & Zamorano-Ulloa, R. (2006). J. Mol. Struct 788, 145–151.
  • Shanmuga Sundara Raj, S., Fun, H.-K., Zhao, P.-S., Jian, F.-F., Lu, L.-D., Yang, X.-J. & Wang, X. (2000). Acta Cryst. C56, 742–743. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography