PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1116.
Published online 2009 August 22. doi:  10.1107/S1600536809032760
PMCID: PMC2969940

catena-Poly[[bis­(p-toluene­sulfonato-κO)palladium(II)]bis­(μ-1,3-di-4-pyridylpropane-κ2 N:N′)]

Abstract

In the title compound, [Pd(C7H7O3S)2(C13H14N2)2]n, the metal ion, located on a twofold rotation axis, exhibits a slightly distorted octa­hedral coordination environment, with bond angles that deviate by at most 2.2° from an ideal geometry, completed by two O atoms from two deprotonated p-toluene­sulfonic acid ligands and four N atoms from four 1,3-di-4-pyridylpropane ligands. One of the sulfonate O atoms is disordered over two positions [ratio 0.70 (5):0.30 (5)].

Related literature

For the potential applications of metal-organic frameworks, see: Jia et al. (2007 [triangle]); Li et al. (1996 [triangle]); Seo et al. (2000 [triangle]); Hagrman et al. (1999 [triangle]); Yaghi et al. (1998 [triangle]); Kortz et al. (2003 [triangle]); Liu et al. (2007 [triangle]); Wang et al. (2007 [triangle]). 1,3-Di(4-pyrid­yl)propane has versatile coordination modes with transition metal centers, see: Xu et al. (2004 [triangle]); Zhu et al. (2002 [triangle]); Mock & Morsch (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1116-scheme1.jpg

Experimental

Crystal data

  • [Pd(C7H7O3S)2(C13H14N2)2]
  • M r = 845.3
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1116-efi3.jpg
  • a = 23.818 (2) Å
  • b = 17.4359 (10) Å
  • c = 9.3341 (10) Å
  • V = 3876.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 273 K
  • 0.12 × 0.08 × 0.01 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.927, T max = 0.994
  • 18799 measured reflections
  • 3374 independent reflections
  • 2761 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.091
  • S = 1.08
  • 3374 reflections
  • 251 parameters
  • H-atom parameters not refined
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032760/bx2229sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032760/bx2229Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NSFC (grant No. 20776081) and the Natural Science Foundation of Shandong Province (grant No. Y2006B37).

supplementary crystallographic information

Comment

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas absorption, molecular recognition, nonlinear optics, and magnetochemistry (Jia et al. (2007); Li et al. (1996); Seo et al. (2000); Hagrman et al. (1999); Yaghi et al. (1998); Kortz et al. (2003); Liu et al. (2007); Wang et al. (2007)). A successful strategy for the design and synthesis of predictable MOFs is the assembly reaction between metal ions and well designed organic ligands. 1,3-di(4-pyridyl)proane is a very good choice for preparing such MOFs because of its versatile coordination modes with transition metal centers (Xu et al. (2004); Zhu et al. (2002); Mock et al. (2001)). We report here the crystal and molecular structure of the title compound, (I).

In the asymmetric unit of complex (I), exhibit one 1,3-di(4-pyridyl)propane ligand, one depronated p-toluenesulfonic acid, and one Pd(II) ion, figure 1.The metal exhibits an octahedral coordination environment with bond angles that do not exceed 2.2° from the ideal geometry completed by two oxygen atoms from two depronated p-Toluenesulfonic acid and four nitrogen atoms from four 3-(2-pyridyl)pyrazole ligand.The bond distances of Pd—O and Pd—N are in the range of 2.326 (2)–2.339 (2) and 2.338 (2) Å, respectively.The O1 atom is disordered over two positions [0.70 (5)/0.30 (5)].

Experimental

A mixture of Pd(II) chloride (1 mmoL), p-Toluenesulfonic acid (1 mmoL), and 1,3-di(4-pyridyl)proane (1 mmoL) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C40H42N4O6PdS2: C 56.78, H 4.97, N 6.62%; Found: C 56.35, H 4.78, N 6.52%.

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 A for the aryl, 0.97 A for the methylene, and 0.96 A for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The atom O1 is disordered and was modelled using a split model with refined population parameters [O1B/O1A = 0.70 (5)/0.30 (5)].

Figures

Fig. 1.
A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Minor component of disordered O1 atom as well as H atoms have been omitted. Unlabeled atoms are related to labeled atoms by the symmetry ...

Crystal data

[Pd(C7H7O3S)2(C13H14N2)2]F(000) = 1744
Mr = 845.3Dx = 1.448 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 7795 reflections
a = 23.818 (2) Åθ = 2.4–28.2°
b = 17.4359 (10) ŵ = 0.64 mm1
c = 9.3341 (10) ÅT = 273 K
V = 3876.3 (6) Å3Block, colorless
Z = 40.12 × 0.08 × 0.01 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3374 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
graphiteRint = 0.068
[var phi] and ω scansθmax = 25°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −28→26
Tmin = 0.927, Tmax = 0.994k = −20→20
18799 measured reflectionsl = −11→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters not refined
S = 1.08w = 1/[σ2(Fo2) + (0.0492P)2 + 0.7971P] where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max = 0.047
251 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.67 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pd10.405803 (9)0.250.250.02547 (12)
S10.38959 (4)0.12445 (5)0.56888 (8)0.0569 (2)
O1A0.453 (3)0.1210 (9)0.624 (7)0.110 (16)0.30 (5)
O1B0.4230 (9)0.1297 (6)0.6913 (16)0.095 (4)0.70 (5)
O20.40587 (9)0.15978 (13)0.4355 (3)0.0623 (6)
O30.33358 (13)0.15336 (15)0.6086 (3)0.1029 (11)
N10.47636 (8)0.18031 (12)0.1367 (2)0.0352 (5)
N20.33394 (8)0.17892 (12)0.1424 (3)0.0383 (5)
C10.3609 (3)−0.2217 (3)0.4820 (7)0.144 (2)
H1A0.3825−0.24620.55590.216*
H1B0.3744−0.23780.38990.216*
H1C0.3221−0.23570.49180.216*
C20.3669 (2)−0.1344 (2)0.4956 (4)0.0741 (11)
C30.32559 (17)−0.0900 (2)0.5550 (4)0.0739 (11)
H30.2924−0.11320.58470.089*
C40.33176 (13)−0.01173 (19)0.5722 (3)0.0561 (8)
H40.30270.01660.61250.067*
C50.37985 (12)0.02464 (16)0.5309 (3)0.0405 (6)
C60.42192 (14)−0.0190 (2)0.4681 (3)0.0520 (8)
H60.45490.00430.43710.062*
C70.41461 (17)−0.0978 (2)0.4516 (4)0.0663 (10)
H70.4431−0.12640.40930.08*
C80.48162 (10)0.16862 (16)−0.0055 (3)0.0386 (6)
H80.45990.1982−0.0670.046*
C90.51733 (10)0.11541 (16)−0.0644 (3)0.0389 (6)
H90.5190.1092−0.16320.047*
C100.50992 (12)0.13828 (18)0.2226 (3)0.0408 (7)
H100.50790.14610.3210.049*
C110.54674 (10)0.08471 (16)0.1715 (3)0.0410 (7)
H110.56910.05720.23510.049*
C120.55099 (10)0.07100 (14)0.0245 (3)0.0339 (6)
C130.58962 (10)0.01068 (17)−0.0364 (4)0.0442 (7)
H13A0.5701−0.0172−0.11130.053*
H13B0.5993−0.02560.03850.053*
C140.64305 (10)0.04495 (15)−0.0976 (3)0.0398 (6)
H14A0.6620.0064−0.15470.048*
H14B0.63320.0871−0.16050.048*
C150.32321 (11)0.17269 (16)0.0008 (3)0.0402 (6)
H150.34940.1923−0.06340.048*
C160.29563 (12)0.15034 (19)0.2325 (3)0.0423 (7)
H160.30190.15440.33060.051*
C170.24731 (11)0.11523 (15)0.1860 (3)0.0413 (6)
H170.22210.09520.25230.05*
C180.27591 (11)0.13906 (16)−0.0530 (3)0.0419 (7)
H180.27050.136−0.15160.05*
C190.23581 (10)0.10944 (14)0.0402 (3)0.0341 (6)
C200.18311 (10)0.07391 (16)−0.0165 (3)0.0380 (6)
H20A0.19320.0314−0.07830.046*
H20B0.16370.1115−0.07480.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.01639 (17)0.02857 (17)0.03145 (18)00−0.00186 (10)
S10.0873 (6)0.0455 (4)0.0379 (4)−0.0102 (4)−0.0087 (4)0.0075 (3)
O1A0.17 (3)0.066 (7)0.09 (3)−0.003 (9)−0.09 (2)0.001 (8)
O1B0.157 (9)0.075 (3)0.051 (5)−0.031 (4)−0.053 (6)−0.004 (4)
O20.0648 (14)0.0570 (14)0.0652 (15)−0.0050 (10)0.0055 (11)0.0284 (12)
O30.131 (3)0.0669 (17)0.111 (2)0.0160 (17)0.070 (2)−0.0008 (16)
N10.0283 (11)0.0425 (12)0.0347 (12)0.0029 (9)−0.0016 (9)−0.0028 (10)
N20.0273 (11)0.0437 (13)0.0438 (14)−0.0045 (9)0.0016 (10)−0.0048 (11)
C10.238 (7)0.055 (3)0.139 (5)−0.016 (4)−0.024 (5)−0.015 (3)
C20.112 (3)0.050 (2)0.060 (2)−0.011 (2)−0.016 (2)0.0012 (18)
C30.074 (2)0.067 (2)0.081 (3)−0.027 (2)−0.007 (2)0.012 (2)
C40.0464 (17)0.061 (2)0.061 (2)−0.0019 (15)0.0018 (15)0.0076 (17)
C50.0437 (16)0.0474 (16)0.0304 (14)0.0013 (13)−0.0044 (12)0.0069 (12)
C60.0503 (17)0.070 (2)0.0361 (16)0.0020 (16)−0.0016 (14)0.0063 (15)
C70.092 (3)0.065 (2)0.0421 (19)0.029 (2)−0.0071 (19)−0.0055 (17)
C80.0314 (14)0.0502 (16)0.0342 (14)0.0048 (12)0.0004 (12)0.0043 (12)
C90.0332 (14)0.0546 (16)0.0291 (14)0.0025 (12)0.0021 (11)−0.0025 (12)
C100.0342 (15)0.0593 (18)0.0290 (14)0.0092 (14)−0.0006 (11)−0.0013 (12)
C110.0300 (14)0.0534 (17)0.0397 (17)0.0118 (12)−0.0016 (12)0.0052 (13)
C120.0199 (12)0.0379 (14)0.0438 (16)−0.0053 (10)0.0046 (11)−0.0043 (12)
C130.0272 (14)0.0428 (16)0.063 (2)−0.0035 (11)0.0099 (13)−0.0097 (15)
C140.0245 (13)0.0457 (16)0.0491 (17)−0.0017 (11)0.0087 (12)−0.0088 (13)
C150.0341 (14)0.0463 (16)0.0402 (16)−0.0064 (12)0.0046 (12)−0.0023 (13)
C160.0328 (15)0.0582 (19)0.0359 (16)−0.0070 (14)−0.0038 (12)0.0000 (13)
C170.0299 (14)0.0512 (17)0.0430 (16)−0.0085 (12)−0.0003 (13)0.0016 (14)
C180.0399 (15)0.0504 (17)0.0353 (15)−0.0053 (13)−0.0007 (12)−0.0038 (13)
C190.0298 (13)0.0329 (13)0.0395 (15)0.0017 (10)−0.0011 (11)−0.0022 (11)
C200.0276 (14)0.0416 (15)0.0448 (16)−0.0018 (11)−0.0062 (12)−0.0023 (13)

Geometric parameters (Å, °)

Pd1—N1i2.328 (2)C7—H70.93
Pd1—N12.328 (2)C8—C91.373 (4)
Pd1—O22.339 (2)C8—H80.93
Pd1—O2i2.339 (2)C9—C121.389 (4)
Pd1—N22.340 (2)C9—H90.93
Pd1—N2i2.340 (2)C10—C111.367 (4)
S1—O1B1.396 (6)C10—H100.93
S1—O21.442 (2)C11—C121.397 (4)
S1—O31.473 (3)C11—H110.93
S1—O1A1.59 (4)C12—C131.508 (4)
S1—C51.791 (3)C13—C141.517 (3)
N1—C81.348 (3)C13—H13A0.97
N1—C101.349 (3)C13—H13B0.97
N2—C161.338 (3)C14—C20ii1.516 (4)
N2—C151.350 (4)C14—H14A0.97
C1—C21.535 (5)C14—H14B0.97
C1—H1A0.96C15—C181.366 (4)
C1—H1B0.96C15—H150.93
C1—H1C0.96C16—C171.374 (4)
C2—C71.367 (5)C16—H160.93
C2—C31.369 (6)C17—C191.392 (4)
C3—C41.382 (5)C17—H170.93
C3—H30.93C18—C191.392 (4)
C4—C51.365 (4)C18—H180.93
C4—H40.93C19—C201.496 (3)
C5—C61.388 (4)C20—C14iii1.516 (4)
C6—C71.394 (5)C20—H20A0.97
C6—H60.93C20—H20B0.97
N1i—Pd1—N187.57 (10)C2—C7—C6122.1 (3)
N1i—Pd1—O290.82 (8)C2—C7—H7119
N1—Pd1—O289.13 (8)C6—C7—H7119
N1i—Pd1—O2i89.13 (8)N1—C8—C9123.6 (3)
N1—Pd1—O2i90.82 (8)N1—C8—H8118.2
O2—Pd1—O2i179.93 (11)C9—C8—H8118.2
N1i—Pd1—N2178.41 (7)C8—C9—C12119.7 (3)
N1—Pd1—N293.24 (8)C8—C9—H9120.2
O2—Pd1—N287.83 (8)C12—C9—H9120.2
O2i—Pd1—N292.23 (8)N1—C10—C11123.0 (2)
N1i—Pd1—N2i93.24 (8)N1—C10—H10118.5
N1—Pd1—N2i178.41 (7)C11—C10—H10118.5
O2—Pd1—N2i92.23 (8)C10—C11—C12120.4 (2)
O2i—Pd1—N2i87.83 (8)C10—C11—H11119.8
N2—Pd1—N2i85.97 (10)C12—C11—H11119.8
O1B—S1—O2121.7 (8)C9—C12—C11116.7 (2)
O1B—S1—O3106.7 (11)C9—C12—C13121.1 (3)
O2—S1—O3108.33 (16)C11—C12—C13122.2 (3)
O2—S1—O1A92 (2)C12—C13—C14112.3 (2)
O3—S1—O1A142 (2)C12—C13—H13A109.2
O1B—S1—C5107.4 (4)C14—C13—H13A109.2
O2—S1—C5106.20 (14)C12—C13—H13B109.2
O3—S1—C5105.37 (15)C14—C13—H13B109.2
O1A—S1—C598.6 (8)H13A—C13—H13B107.9
S1—O2—Pd1157.82 (15)C20ii—C14—C13113.3 (2)
C8—N1—C10116.6 (2)C20ii—C14—H14A108.9
C8—N1—Pd1126.37 (17)C13—C14—H14A108.9
C10—N1—Pd1116.20 (17)C20ii—C14—H14B108.9
C16—N2—C15117.2 (2)C13—C14—H14B108.9
C16—N2—Pd1115.22 (18)H14A—C14—H14B107.7
C15—N2—Pd1126.96 (18)N2—C15—C18123.4 (3)
C2—C1—H1A109.5N2—C15—H15118.3
C2—C1—H1B109.5C18—C15—H15118.3
H1A—C1—H1B109.5N2—C16—C17122.6 (3)
C2—C1—H1C109.5N2—C16—H16118.7
H1A—C1—H1C109.5C17—C16—H16118.7
H1B—C1—H1C109.5C16—C17—C19120.4 (3)
C7—C2—C3117.1 (3)C16—C17—H17119.8
C7—C2—C1121.0 (5)C19—C17—H17119.8
C3—C2—C1121.9 (5)C15—C18—C19119.7 (3)
C2—C3—C4121.9 (3)C15—C18—H18120.2
C2—C3—H3119C19—C18—H18120.2
C4—C3—H3119C17—C19—C18116.7 (2)
C5—C4—C3121.0 (3)C17—C19—C20122.7 (2)
C5—C4—H4119.5C18—C19—C20120.5 (2)
C3—C4—H4119.5C19—C20—C14iii114.7 (2)
C4—C5—C6118.1 (3)C19—C20—H20A108.6
C4—C5—S1120.3 (2)C14iii—C20—H20A108.6
C6—C5—S1121.5 (2)C19—C20—H20B108.6
C5—C6—C7119.8 (3)C14iii—C20—H20B108.6
C5—C6—H6120.1H20A—C20—H20B107.6
C7—C6—H6120.1
O1B—S1—O2—Pd1−103.6 (11)O3—S1—C5—C6169.7 (2)
O3—S1—O2—Pd120.5 (5)O1A—S1—C5—C6−40 (3)
O1A—S1—O2—Pd1−127.1 (14)C4—C5—C6—C7−1.3 (4)
C5—S1—O2—Pd1133.3 (4)S1—C5—C6—C7174.4 (2)
N1i—Pd1—O2—S191.8 (4)C3—C2—C7—C61.1 (5)
N1—Pd1—O2—S1179.3 (4)C1—C2—C7—C6−177.4 (4)
N2—Pd1—O2—S1−87.4 (4)C5—C6—C7—C20.0 (5)
N2i—Pd1—O2—S1−1.5 (4)C10—N1—C8—C92.2 (4)
N1i—Pd1—N1—C8−127.0 (2)Pd1—N1—C8—C9−166.94 (19)
O2—Pd1—N1—C8142.2 (2)N1—C8—C9—C12−0.9 (4)
O2i—Pd1—N1—C8−37.9 (2)C8—N1—C10—C11−1.7 (4)
O2—Pd1—N1—C10−27.1 (2)Pd1—N1—C10—C11168.6 (2)
O2i—Pd1—N1—C10152.9 (2)N1—C10—C11—C12−0.2 (4)
N2—Pd1—N1—C10−114.83 (19)C8—C9—C12—C11−1.0 (4)
N1—Pd1—N2—C16128.3 (2)C8—C9—C12—C13178.5 (2)
O2i—Pd1—N2—C16−140.8 (2)C10—C11—C12—C91.5 (4)
N2i—Pd1—N2—C16−53.09 (18)C10—C11—C12—C13−178.0 (3)
N1—Pd1—N2—C15−61.2 (2)C9—C12—C13—C1478.7 (3)
O2—Pd1—N2—C15−150.2 (2)C11—C12—C13—C14−101.9 (3)
O2i—Pd1—N2—C1529.7 (2)C12—C13—C14—C20ii72.0 (3)
N2i—Pd1—N2—C15117.4 (2)C16—N2—C15—C18−0.1 (4)
C7—C2—C3—C4−0.9 (6)Pd1—N2—C15—C18−170.4 (2)
C1—C2—C3—C4177.5 (4)C15—N2—C16—C170.6 (4)
C2—C3—C4—C5−0.4 (6)Pd1—N2—C16—C17172.0 (2)
C3—C4—C5—C61.5 (5)N2—C16—C17—C19−1.3 (5)
C3—C4—C5—S1−174.3 (3)N2—C15—C18—C190.3 (4)
O1B—S1—C5—C498.9 (12)C16—C17—C19—C181.4 (4)
O2—S1—C5—C4−129.5 (2)C16—C17—C19—C20−178.2 (3)
O3—S1—C5—C4−14.7 (3)C15—C18—C19—C17−0.9 (4)
O1A—S1—C5—C4136 (3)C15—C18—C19—C20178.6 (2)
O1B—S1—C5—C6−76.7 (12)C17—C19—C20—C14iii0.2 (4)
O2—S1—C5—C654.9 (3)C18—C19—C20—C14iii−179.3 (2)

Symmetry codes: (i) x, −y+1/2, −z+1/2; (ii) x+1/2, y, −z; (iii) x−1/2, y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2229).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [PubMed]
  • Jia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. Commun.10, 265–268.
  • Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J.9, 2945–2952.
  • Li, H., Eddaoudi, M. O., Keffe, M. & Yaghi, O. M. (1996). Nature (London), 402, 276–279.
  • Liu, B., Li, X. M., Li, C. B., Gao, G. G. & Che, G. B. (2007). Chin. J. Struct. Chem.26, 679–682.
  • Mock, W. L. & Morsch, L. A. (2001). Tetrahedron, 57, 2957–2964.
  • Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct.831, 61–68.
  • Xu, C., Mao, H. Y., Zhang, H. Y., Liu, H. L., Wu, Q. A., Hou, H. W. & Zhu, Y. (2004). Chin. J. Struct. Chem.23, 567–570.
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  • Zhu, L. G., Cai, G. Q., Susumu, K. & Ho-Chol, C. (2002). Chin. J. Inorg. Chem.18, 911–914.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography