PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2250.
Published online 2009 August 26. doi:  10.1107/S1600536809033376
PMCID: PMC2969934

[3-Bromo-2-(3-fluoro­benz­yloxy)phen­yl]boronic acid

Abstract

In the title compound, C13H11BBrFO3, the dioxy­boron fragment is close to co-planar with the benzene ring to which the B atom is connected [dihedral angle = 8.96 (4)°]. The dihedral angle between the two benzene rings is 14.8 (2)°. One of the OH groups is engaged in an intra­molecular O—H(...)O hydrogen-bonding inter­action. The second OH group is involved in inter­molecular hydrogen bonding, forming a centrosymmetric dimer. The F atom and the corresponding meta-H atom are disordered over two positions in a 0.675 (6):0.325 (6) ratio.

Related literature

For general background to the applications of boronic acids and aryl-benzyl ethers, see: Bien et al. (1995 [triangle]); Dai et al. (2009 [triangle]); Miyaura & Suzuki (1995 [triangle]). For the structural characterization of a related boronic acid derivative, see: Serwatowski et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2250-scheme1.jpg

Experimental

Crystal data

  • C13H11BBrFO3
  • M r = 324.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2250-efi1.jpg
  • a = 14.913 (2) Å
  • b = 4.0214 (6) Å
  • c = 21.945 (3) Å
  • β = 101.572 (13)°
  • V = 1289.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.20 mm−1
  • T = 100 K
  • 0.18 × 0.16 × 0.08 mm

Data collection

  • Kuma KM-4-CCD diffractometer
  • Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2001 [triangle]) T min = 0.588, T max = 0.892
  • 18281 measured reflections
  • 2263 independent reflections
  • 1487 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.055
  • S = 0.95
  • 2263 reflections
  • 208 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2001 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2001 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033376/wm2251sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033376/wm2251Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Warsaw University of Technology and the Polish Ministry of Science and Higher Education (grant No. N N205 055633). The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. We acknowledge the Aldrich Chemical Company for the donation of chemicals and equipment. We address our special thanks to Łukasz Dobrzycki from the University of Warsaw for many valuable suggestions regarding the data analysis.

supplementary crystallographic information

Comment

The high synthetic utility of boronic acids (Bien et al., 1995; Miyaura & Suzuki, 1995) enforces a continuous progress in the preparation and characterization of these compounds. The molecular structure of the title compound, C13H11BBrFO3 (I), is shown in Fig. 1. It is the second example of an arylboronic acid based on the aryl-benzyl ether structure containing an aryloxymethylene substituent. Aryl-benzyl ethers found recently a new application as human immunodeficiency virus-1 (HIV-1) inhibitors (Dai et al., 2009).

The molecular structure of (I) shows that the dioxyboron fragment formed by B, O1 and O2 atoms is essentially planar with the phenyl ring to which the boron atom is connected (C6—C5—B1—O2 = 3.6 (6)°). The hydrogen atom bonded to O2 is involved in an intramolecular O—H···O interaction with atom O3, forming a five-membered ring. The hydrogen atom bonded to O1 is involved in an intermolecular hydrogen bonding to form a centrosymmetric dimer (Fig. 2). The angle between planes formed by two phenyl rings in the same molecule is 14.8 (2)°.

For the structural characterization of a related boronic acid derivative, see: Serwatowski et al. (2006).

Experimental

3-Bromo-2-(3-fluorobenzyloxy)phenylboronic acid was obtained from Aldrich and recrystallized from toluene.

Refinement

The fluorine atom is disordered over two positions with site occupation factors of 0.325 (6) and 0.675 (6). Positions of most of the hydrogen atoms were refined freely with Uiso(H) = 1.2 or 1.5Ueq(C). The OH hydrogen atoms were refined with a constrained bond length of O—H = 0.84 Å. Hydrogen atoms that belong to the disordered part of the phenyl ring were not refined but added geometrically with a fixed bond length of 0.95 Å.

Figures

Fig. 1.
The molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level. H atoms are given as spheres of arbitrary radius.
Fig. 2.
The hydrogen bonding pattern (dashed lines) for the title compound.

Crystal data

C13H11BBrFO3F(000) = 648
Mr = 324.94Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10000 reflections
a = 14.913 (2) Åθ = 1.5–29.7°
b = 4.0214 (6) ŵ = 3.20 mm1
c = 21.945 (3) ÅT = 100 K
β = 101.572 (13)°Plate, colourless
V = 1289.3 (3) Å30.18 × 0.16 × 0.08 mm
Z = 4

Data collection

Kuma KM-4-CCD diffractometer2263 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
graphiteRint = 0.085
Detector resolution: 8.6479 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = −17→17
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2001)k = −4→4
Tmin = 0.588, Tmax = 0.892l = −26→26
18281 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 0.95w = 1/[σ2(Fo2) + (0.0124P)2] where P = (Fo2 + 2Fc2)/3
2263 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.96580 (3)1.14409 (10)0.67991 (2)0.04384 (17)
F1A0.8311 (4)1.4084 (19)0.8860 (3)0.053 (3)0.325 (6)
F1B0.5319 (2)1.0376 (7)0.82343 (17)0.0509 (15)0.675 (6)
O10.59426 (15)0.7687 (6)0.46913 (11)0.0312 (7)
H1O0.53810.81100.46390.047*
O20.59005 (15)1.0479 (6)0.56380 (11)0.0303 (7)
H2O0.62701.12870.59410.045*
O30.75692 (15)1.0863 (6)0.64438 (12)0.0274 (7)
C10.8937 (3)0.9636 (8)0.6059 (2)0.0298 (11)
C20.9361 (3)0.8402 (10)0.5612 (2)0.0371 (12)
C30.8850 (3)0.7134 (9)0.5063 (2)0.0343 (12)
C40.7900 (3)0.7262 (9)0.4969 (2)0.0281 (11)
C50.7446 (2)0.8543 (9)0.54136 (17)0.0216 (9)
C60.7993 (3)0.9652 (8)0.59737 (19)0.0254 (10)
C70.7527 (3)0.8354 (10)0.6923 (2)0.0340 (12)
C80.7268 (3)0.9918 (8)0.74709 (19)0.0277 (11)
C90.7913 (3)1.1548 (10)0.79215 (19)0.0279 (10)
C100.7665 (3)1.2884 (9)0.8437 (2)0.0363 (12)
H100.81111.40460.87300.044*0.675 (6)
C110.6793 (3)1.2605 (9)0.8545 (2)0.0371 (12)
C120.6166 (3)1.0960 (11)0.8101 (2)0.0432 (12)
H120.55571.07320.81640.052*0.325 (6)
C130.6380 (3)0.9641 (9)0.7575 (2)0.0392 (13)
B10.6376 (3)0.8885 (11)0.5250 (2)0.0242 (11)
H21.001 (2)0.854 (8)0.5647 (14)0.029*
H30.915 (2)0.627 (8)0.4740 (14)0.029*
H40.757 (2)0.661 (8)0.4593 (15)0.029*
H7A0.711 (2)0.663 (8)0.6717 (14)0.029*
H7B0.814 (2)0.734 (7)0.7016 (14)0.029*
H90.853 (2)1.172 (8)0.7849 (14)0.029*
H110.661 (2)1.346 (8)0.8908 (15)0.029*
H130.592 (2)0.846 (8)0.7247 (14)0.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0292 (2)0.0242 (2)0.0660 (3)−0.0001 (2)−0.0193 (2)0.0000 (3)
F1A0.042 (5)0.071 (6)0.041 (6)−0.001 (4)−0.005 (4)−0.022 (4)
F1B0.023 (2)0.065 (3)0.061 (3)0.009 (2)0.0017 (17)−0.003 (2)
O10.0186 (14)0.0417 (18)0.0310 (17)0.0012 (12)−0.0005 (13)−0.0128 (13)
O20.0221 (15)0.0386 (18)0.0260 (18)0.0020 (12)−0.0048 (13)−0.0083 (14)
O30.0284 (15)0.0150 (15)0.0336 (18)0.0036 (12)−0.0063 (13)0.0002 (14)
C10.023 (2)0.015 (2)0.045 (3)0.0029 (17)−0.012 (2)0.005 (2)
C20.015 (2)0.024 (2)0.069 (4)0.005 (2)−0.002 (2)0.002 (3)
C30.026 (3)0.023 (2)0.058 (4)0.0020 (19)0.020 (2)−0.005 (2)
C40.026 (3)0.022 (2)0.035 (3)−0.0007 (18)0.003 (2)0.003 (2)
C50.024 (2)0.0085 (18)0.030 (3)0.0010 (19)0.0004 (19)0.001 (2)
C60.027 (2)0.013 (2)0.035 (3)0.0072 (17)0.003 (2)0.0028 (19)
C70.038 (3)0.016 (2)0.041 (3)0.002 (2)−0.008 (2)0.000 (2)
C80.035 (3)0.011 (2)0.033 (3)0.0038 (18)−0.003 (2)0.0024 (19)
C90.024 (2)0.022 (2)0.033 (3)0.002 (2)−0.002 (2)0.005 (2)
C100.036 (3)0.026 (3)0.043 (3)0.004 (2)−0.004 (3)0.001 (2)
C110.038 (3)0.029 (3)0.043 (3)0.013 (2)0.004 (3)−0.004 (2)
C120.027 (3)0.037 (3)0.065 (4)0.007 (2)0.006 (3)−0.003 (3)
C130.036 (3)0.023 (2)0.049 (4)−0.001 (2)−0.012 (3)−0.007 (2)
B10.027 (3)0.014 (2)0.031 (3)−0.003 (2)0.005 (2)0.004 (2)

Geometric parameters (Å, °)

Br1—C11.902 (4)C5—B11.569 (5)
O1—B11.355 (5)C7—C81.476 (5)
O1—H1O0.8400C7—H7A0.98 (3)
O2—B11.371 (5)C7—H7B0.98 (3)
O2—H2O0.8400C8—C131.393 (5)
O3—C61.401 (4)C8—C91.397 (5)
O3—C71.467 (4)C9—C101.368 (5)
C1—C21.362 (5)C9—H90.96 (3)
C1—C61.384 (5)C10—C111.372 (5)
C2—C31.387 (5)C10—H100.9500
C2—H20.96 (3)C11—C121.376 (5)
C3—C41.392 (5)C11—H110.95 (3)
C3—H30.97 (3)C12—C131.365 (5)
C4—C51.394 (5)C12—H120.9500
C4—H40.91 (3)C13—H131.01 (3)
C5—C61.404 (5)
B1—O1—H1O109.5O3—C7—H7B105.2 (19)
B1—O2—H2O109.5C8—C7—H7B112.9 (19)
C6—O3—C7112.3 (3)H7A—C7—H7B106 (3)
C2—C1—C6120.7 (4)C13—C8—C9117.6 (4)
C2—C1—Br1119.3 (3)C13—C8—C7120.8 (4)
C6—C1—Br1119.9 (3)C9—C8—C7121.4 (4)
C1—C2—C3120.4 (4)C10—C9—C8120.4 (4)
C1—C2—H2122 (2)C10—C9—H9122 (2)
C3—C2—H2117 (2)C8—C9—H9117.4 (19)
C2—C3—C4118.8 (4)C9—C10—C11122.3 (4)
C2—C3—H3121.1 (19)C9—C10—H10118.9
C4—C3—H3120.1 (19)C11—C10—H10118.9
C3—C4—C5122.2 (4)C10—C11—C12116.7 (4)
C3—C4—H4118 (2)C10—C11—H11123 (2)
C5—C4—H4120 (2)C12—C11—H11120 (2)
C4—C5—C6116.9 (3)C13—C12—C11123.0 (5)
C4—C5—B1119.1 (3)C13—C12—H12118.5
C6—C5—B1123.9 (4)C11—C12—H12118.5
C1—C6—O3120.0 (4)C12—C13—C8119.9 (4)
C1—C6—C5120.9 (4)C12—C13—H13123.2 (19)
O3—C6—C5119.1 (3)C8—C13—H13116.9 (19)
O3—C7—C8110.3 (3)O1—B1—O2121.1 (3)
O3—C7—H7A105.8 (19)O1—B1—C5117.0 (4)
C8—C7—H7A115.6 (19)O2—B1—C5121.8 (4)
C6—C1—C2—C3−0.1 (6)C6—O3—C7—C8167.5 (3)
Br1—C1—C2—C3−178.7 (3)O3—C7—C8—C13102.5 (4)
C1—C2—C3—C42.4 (6)O3—C7—C8—C9−81.5 (4)
C2—C3—C4—C5−1.7 (6)C13—C8—C9—C10−1.6 (5)
C3—C4—C5—C6−1.3 (5)C7—C8—C9—C10−177.8 (4)
C3—C4—C5—B1174.8 (3)C8—C9—C10—C112.1 (6)
C2—C1—C6—O3178.6 (3)C9—C10—C11—C12−1.3 (6)
Br1—C1—C6—O3−2.8 (4)C10—C11—C12—C130.1 (6)
C2—C1—C6—C5−3.0 (5)C11—C12—C13—C80.3 (6)
Br1—C1—C6—C5175.6 (3)C9—C8—C13—C120.4 (5)
C7—O3—C6—C1−82.8 (4)C7—C8—C13—C12176.6 (4)
C7—O3—C6—C598.8 (3)C4—C5—B1—O14.4 (5)
C4—C5—C6—C13.6 (5)C6—C5—B1—O1−179.9 (3)
B1—C5—C6—C1−172.3 (3)C4—C5—B1—O2−172.2 (3)
C4—C5—C6—O3−178.0 (3)C6—C5—B1—O23.6 (6)
B1—C5—C6—O36.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.841.972.797 (3)169
O2—H2O···O30.842.032.753 (3)143

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2251).

References

  • Bien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem 60, 2147–2152.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dai, H. L., Liu, W. Q., Xu, H., Yang, L. M., Lv, M. & Zheng, Y. T. (2009). Chem. Pharm. Bull.57, 84–86. [PubMed]
  • Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308-o1309.
  • Miyaura, N. & Suzuki, A. (1995). Chem. Rev 95, 2457–2483.
  • Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED Oxford Diffraction Poland, Wrocław, Poland.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography