PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1065–m1066.
Published online 2009 August 12. doi:  10.1107/S1600536809031250
PMCID: PMC2969933

Poly[diaqua­(μ2-oxalato-κ4 O 1,O 2:O 1′,O 2′)(μ2-pyrazine-2-carboxyl­ato-κ4 N 1,O:O,O′)neodymium(III)]

Abstract

In the title complex, [Nd(C5H3N2O2)(C2O4)(H2O)2]n, the NdIII atom is ten-coordinated by one N atom and three O atoms from two pyrazine-2-carboxyl­ate ligands, four O atoms from two oxalate ligands and two water mol­ecules in a distorted bicapped square-anti­prismatic geometry. The two crystallographically independent oxalate ligands, each lying on an inversion center, act as bridging ligands, linking Nd atoms into an extended zigzag chain. Neighboring chains are linked by the pyrazine-2-carboxyl­ate ligands into a two-dimensional layerlike network in the (10An external file that holds a picture, illustration, etc.
Object name is e-65-m1065-efi1.jpg) plane. The layers are further connected by O—H(...)O and O—H(...)N hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For general background to lanthanide coordination frameworks, see: Han et al. (2009 [triangle]); Li et al. (2006 [triangle]); Wang et al. (2006 [triangle]); Zhou et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1065-scheme1.jpg

Experimental

Crystal data

  • [Nd(C5H3N2O2)(C2O4)(H2O)2]
  • M r = 391.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1065-efi2.jpg
  • a = 7.948 (3) Å
  • b = 8.6512 (18) Å
  • c = 8.7425 (18) Å
  • α = 115.525 (2)°
  • β = 101.970 (3)°
  • γ = 96.306 (3)°
  • V = 517.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.06 mm−1
  • T = 296 K
  • 0.23 × 0.19 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.320, T max = 0.420
  • 2533 measured reflections
  • 1824 independent reflections
  • 1756 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.132
  • S = 1.08
  • 1824 reflections
  • 175 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.95 e Å−3
  • Δρmin = −2.98 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031250/hy2217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031250/hy2217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of PRC (project No. 2007A090302046) and the Project of Science and Technology of Guangdong Province (project No. 2007A020200002-4) for supporting this work.

supplementary crystallographic information

Comment

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide coordination frameworks with bridging multifunctional organic ligands, not only because of their fascinating topological networks, but also due to their potential applications in ion exchange, gas storage, catalysis and luminescence (Wang et al., 2006; Zhou et al., 2006). As a building block, pyrazine-2-carboxylic acid and oxalic acid are good ligands with multifunctional coordination sites providing a high likelihood for the generation of structures with high dimensions (Han et al., 2009; Li et al., 2006). Recently, we obtained the title coordination polymer under hydrothermal conditions.

In the title compound, the NdIII atom is coordinated by seven O atoms and one N atom from two pyrazine-2-carboxylate ligands and two oxalate ligands, and by two water molecules in a distorted bicapped square-antiprismatic geometry (Fig. 1). The NdIII atoms are linked by the oxalate ligands, forming an extended zigzag chain. These chains are linked by the pyrazine-2-carboxylate ligands into a two-dimensional layerlike network (Fig. 2). The Nd—O and Nd—N bond lengths range from 2.467 (4) to 2.885 (6) Å (Table 1). O—H···O and O—H···N hydrogen bonds (Table 2) involving the pyrazine-2-carboxylate ligands, coordinated water molecules and oxalate ligands assemble neighboring layers into a three-dimensional supramolecular network.

Experimental

A mixture of Nd2O3 (0.245 g, 0.75 mmol), pyrazine-2-carboxylic acid (0.186 g, 1.5 mmol), oxalic acid (0.135 g, 1.5 mmol), water (10 ml) in the presence of HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h-1. Colorless block crystals of the title compound were obtained.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.84 (1) and H···H = 1.34 (1) Å , and with a fixed Uiso(H). C-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.96 Å from Nd1 and the deepest hole 0.87 Å from Nd1.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 2-x, 2-y, 2-z; (iii) 2-x, 1-y, 2-z.]
Fig. 2.
View of the layered network in the title compound.

Crystal data

[Nd(C5H3N2O2)(C2O4)(H2O)2]Z = 2
Mr = 391.39F(000) = 374
Triclinic, P1Dx = 2.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.948 (3) ÅCell parameters from 2522 reflections
b = 8.6512 (18) Åθ = 2.7–28.3°
c = 8.7425 (18) ŵ = 5.06 mm1
α = 115.525 (2)°T = 296 K
β = 101.970 (3)°Block, colorless
γ = 96.306 (3)°0.23 × 0.19 × 0.17 mm
V = 517.0 (2) Å3

Data collection

Bruker APEXII CCD diffractometer1824 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
graphiteRint = 0.065
[var phi] and ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→9
Tmin = 0.320, Tmax = 0.420k = −8→10
2533 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0313P] where P = (Fo2 + 2Fc2)/3
1824 reflections(Δ/σ)max = 0.002
175 parametersΔρmax = 1.95 e Å3
6 restraintsΔρmin = −2.98 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.1008 (9)0.3421 (10)0.7510 (9)0.0146 (15)
C21.2220 (10)0.2213 (10)0.7476 (10)0.0175 (15)
C31.2449 (13)0.0959 (12)0.5928 (12)0.0246 (19)
H31.18820.09200.48650.030*
C41.4345 (11)0.0053 (11)0.7489 (11)0.0227 (17)
H41.5126−0.06600.75430.027*
C51.4166 (11)0.1312 (11)0.9049 (11)0.0235 (17)
H51.48180.14151.01160.028*
C60.9283 (8)1.0062 (9)0.9289 (9)0.0114 (14)
C70.4413 (9)0.5252 (9)0.5645 (9)0.0156 (15)
H1W1.058 (11)0.745 (10)0.649 (9)0.023*
H2W1.143 (10)0.630 (10)0.676 (10)0.023*
H3W0.599 (5)0.229 (10)0.680 (9)0.023*
H4W0.731 (9)0.226 (9)0.802 (10)0.023*
N11.3077 (9)0.2389 (9)0.9065 (8)0.0175 (13)
N21.3439 (9)−0.0191 (9)0.5892 (9)0.0240 (15)
Nd10.83941 (4)0.58653 (4)0.82456 (4)0.0124 (2)
O11.0011 (8)0.3228 (8)0.6106 (7)0.0244 (13)
O21.1050 (7)0.4616 (7)0.9021 (7)0.0182 (11)
O30.8094 (7)0.8693 (7)0.8272 (7)0.0185 (11)
O40.9419 (7)1.1485 (7)0.9251 (7)0.0192 (11)
O50.5149 (7)0.5678 (8)0.7214 (7)0.0230 (12)
O60.2843 (7)0.5193 (8)0.4984 (6)0.0210 (11)
O1W1.0754 (9)0.6971 (9)0.7148 (8)0.0240 (13)
O2W0.7008 (7)0.2834 (7)0.7480 (7)0.0204 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.019 (4)0.013 (4)0.016 (4)0.002 (3)0.009 (3)0.009 (3)
C20.024 (4)0.013 (4)0.016 (4)0.001 (3)0.005 (3)0.007 (3)
C30.034 (5)0.016 (5)0.020 (4)0.005 (4)0.007 (4)0.006 (4)
C40.028 (4)0.016 (4)0.028 (4)0.010 (3)0.016 (4)0.010 (4)
C50.025 (4)0.024 (4)0.030 (4)0.011 (3)0.009 (3)0.018 (4)
C60.008 (3)0.006 (3)0.014 (3)−0.001 (2)−0.001 (3)0.001 (3)
C70.018 (4)0.006 (4)0.016 (4)0.000 (3)0.007 (3)−0.001 (3)
N10.023 (3)0.015 (3)0.018 (3)0.008 (3)0.007 (3)0.009 (3)
N20.029 (4)0.013 (3)0.027 (4)0.003 (3)0.014 (3)0.004 (3)
Nd10.0159 (3)0.0065 (3)0.0146 (3)0.00016 (19)0.0035 (2)0.0058 (2)
O10.032 (3)0.027 (3)0.021 (3)0.010 (3)0.009 (2)0.016 (3)
O20.022 (3)0.014 (3)0.024 (3)0.006 (2)0.011 (2)0.012 (2)
O30.016 (3)0.013 (3)0.024 (3)0.000 (2)0.000 (2)0.010 (2)
O40.025 (3)0.010 (3)0.024 (3)0.002 (2)0.003 (2)0.011 (2)
O50.022 (3)0.033 (3)0.019 (3)0.009 (2)0.008 (2)0.014 (3)
O60.019 (3)0.024 (3)0.015 (3)0.004 (2)0.003 (2)0.006 (2)
O1W0.033 (3)0.022 (3)0.022 (3)0.008 (3)0.013 (3)0.012 (3)
O2W0.029 (3)0.007 (3)0.022 (3)−0.003 (2)0.006 (2)0.006 (2)

Geometric parameters (Å, °)

C1—O11.246 (9)Nd1—O2W2.467 (5)
C1—O21.270 (9)Nd1—O32.474 (5)
C1—C21.492 (10)Nd1—O6ii2.490 (5)
C2—N11.350 (10)Nd1—O4i2.508 (5)
C2—C31.386 (11)Nd1—O52.512 (5)
C3—N21.328 (11)Nd1—O1W2.549 (6)
C3—H30.9300Nd1—O2iii2.557 (5)
C4—N21.345 (11)Nd1—O22.573 (5)
C4—C51.379 (11)Nd1—N1iii2.765 (6)
C4—H40.9300Nd1—O12.885 (6)
C5—N11.337 (10)O2—Nd1iii2.557 (5)
C5—H50.9300O4—Nd1i2.508 (5)
C6—O41.239 (9)O6—Nd1ii2.490 (5)
C6—O31.259 (9)O1W—H1W0.84 (9)
C6—C6i1.553 (13)O1W—H2W0.85 (8)
C7—O51.243 (9)O2W—H3W0.84 (5)
C7—O61.247 (9)O2W—H4W0.84 (8)
C7—C7ii1.560 (13)
O1—C1—O2123.1 (7)O6ii—Nd1—O2iii151.94 (19)
O1—C1—C2120.3 (6)O4i—Nd1—O2iii72.00 (17)
O2—C1—C2116.6 (6)O5—Nd1—O2iii107.89 (16)
N1—C2—C3121.0 (7)O1W—Nd1—O2iii125.89 (18)
N1—C2—C1115.7 (6)O2W—Nd1—O276.93 (18)
C3—C2—C1123.3 (7)O3—Nd1—O2133.80 (17)
N2—C3—C2123.2 (8)O6ii—Nd1—O2113.72 (16)
N2—C3—H3118.4O4i—Nd1—O276.60 (17)
C2—C3—H3118.4O5—Nd1—O2153.11 (18)
N2—C4—C5122.9 (7)O1W—Nd1—O274.92 (18)
N2—C4—H4118.6O2iii—Nd1—O260.11 (19)
C5—C4—H4118.6O2W—Nd1—N1iii97.86 (19)
N1—C5—C4121.6 (7)O3—Nd1—N1iii72.90 (18)
N1—C5—H5119.2O6ii—Nd1—N1iii128.29 (18)
C4—C5—H5119.2O4i—Nd1—N1iii68.70 (19)
O4—C6—O3126.2 (6)O5—Nd1—N1iii65.79 (18)
O4—C6—C6i117.3 (8)O1W—Nd1—N1iii131.7 (2)
O3—C6—C6i116.4 (8)O2iii—Nd1—N1iii59.62 (17)
O5—C7—O6127.3 (6)O2—Nd1—N1iii116.80 (17)
O5—C7—C7ii116.5 (8)O2W—Nd1—O166.01 (18)
O6—C7—C7ii116.2 (8)O3—Nd1—O1128.48 (16)
C5—N1—C2116.2 (7)O6ii—Nd1—O166.65 (16)
C5—N1—Nd1iii126.3 (5)O4i—Nd1—O1113.54 (17)
C2—N1—Nd1iii114.6 (5)O5—Nd1—O1120.34 (17)
C3—N2—C4114.9 (7)O1W—Nd1—O164.46 (19)
O2W—Nd1—O3149.08 (18)O2iii—Nd1—O199.62 (15)
O2W—Nd1—O6ii83.06 (18)O2—Nd1—O147.38 (16)
O3—Nd1—O6ii80.47 (18)N1iii—Nd1—O1158.20 (17)
O2W—Nd1—O4i139.97 (17)C1—O1—Nd187.4 (4)
O3—Nd1—O4i65.15 (16)C1—O2—Nd1iii122.1 (4)
O6ii—Nd1—O4i135.42 (18)C1—O2—Nd1101.6 (4)
O2W—Nd1—O576.22 (19)Nd1iii—O2—Nd1119.89 (19)
O3—Nd1—O573.09 (18)C6—O3—Nd1120.1 (4)
O6ii—Nd1—O564.36 (16)C6—O4—Nd1i119.1 (4)
O4i—Nd1—O5124.93 (17)C7—O5—Nd1121.0 (4)
O2W—Nd1—O1W130.01 (19)C7—O6—Nd1ii121.8 (4)
O3—Nd1—O1W68.27 (19)Nd1—O1W—H1W125 (5)
O6ii—Nd1—O1W71.92 (19)Nd1—O1W—H2W117 (6)
O4i—Nd1—O1W69.52 (19)H1W—O1W—H2W105 (8)
O5—Nd1—O1W125.09 (18)Nd1—O2W—H3W124 (5)
O2W—Nd1—O2iii68.90 (17)Nd1—O2W—H4W128 (5)
O3—Nd1—O2iii124.64 (16)H3W—O2W—H4W106 (8)

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iv0.84 (9)2.02 (6)2.707 (8)139 (7)
O1W—H2W···O6v0.85 (8)2.07 (4)2.838 (8)152 (6)
O2W—H3W···N2vi0.84 (5)2.50 (5)3.229 (9)145 (6)
O2W—H4W···O4vii0.84 (8)2.13 (4)2.872 (8)147 (7)

Symmetry codes: (iv) −x+2, −y+1, −z+1; (v) x+1, y, z; (vi) x−1, y, z; (vii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2217).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, L., Meng, Q.-H., Hao, J.-D., Luo, Y.-F. & Zeng, R.-H. (2009). Acta Cryst. E65, m76.
  • Li, P., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem.45, 10425–10427. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed.45, 3287–3291. [PubMed]
  • Zhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135–143. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography