PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2079–o2080.
Published online 2009 August 8. doi:  10.1107/S160053680903030X
PMCID: PMC2969932

4-[(4-Fluoro­benzyl­idene)amino]-3-[1-(4-isobutyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C21H23FN4S, the benzene rings of the isobutyl­phenyl and fluoro­benzene units form dihedral angles of 75.89 (7) and 13.26 (7)°, respectively, with the triazole ring. An intra­molecular C—H(...)S hydrogen-bonding contact generates an S(6) ring motif. In the crystal packing, pairs of N—H(...)S hydrogen bonds link neighbouring mol­ecules into inversion dimers, forming R 2 2(8) ring motifs. The crystal structure is further stabilized by C—H(...)π inter­actions.

Related literature

For pharmacological activity of triazoles, see: Göknur et al. (2005 [triangle]). For the anti-tumor activity of triazole derivatives, see: Demirbas et al. (2002 [triangle], 2004 [triangle]). For the synthesis of related heterocyclic compounds, see: Fun et al. (2008 [triangle], 2009a [triangle]). For a related structure, see: Fun et al. (2009b [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2079-scheme1.jpg

Experimental

Crystal data

  • C21H23FN4S
  • M r = 382.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2079-efi2.jpg
  • a = 5.7883 (1) Å
  • b = 9.9001 (1) Å
  • c = 18.4972 (3) Å
  • α = 98.132 (1)°
  • β = 97.087 (1)°
  • γ = 105.997 (1)°
  • V = 993.90 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 100 K
  • 0.46 × 0.20 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.919, T max = 0.987
  • 31031 measured reflections
  • 7460 independent reflections
  • 5798 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.135
  • S = 1.06
  • 7460 reflections
  • 336 parameters
  • All H-atom parameters refined
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903030X/tk2518sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903030X/tk2518Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks USM for a student assistantship.

supplementary crystallographic information

Comment

1,2,4-Triazoles and their derivatives represent a rapidly developing field in modern heterocyclic chemistry. Similarly, ibuprofen belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) with diverse pharmacological activities. The analgesic, anti-asthematic, diuretic, anti-hypertensive and anti-inflammatory properties associated with these drugs have made them important chemotherapeutic agents (Göknur et al., 2005). Our earlier studies involved the synthesis of heterocyclic compounds incorporating ibuprofen and 1,2,4-triazole fragments in the structures (Fun et al., 2008, 2009a). Schiff base derivatives of 1,2,4-triazole are known to possess anti-tumor activity (Demirbas et al., 2004). Similarly, some Schiff base derivatives of acetic acid hydrazides containing 1,2,4-triazol-5-one ring have displayed anti-tumoral activity only against breast cancer, while 2-phenyl ethylidenamino and 2-phenyl ethylamino derivatives of 4-amino-1,2,4-triazol-5-ones have been found to be effective towards non-small cell lung cancer, cranial neural crest cancer, and breast cancer (Demirbas et al., 2002). In this connection and in continuation of our interest in the synthesis of chemically and biologically important heterocycles, we now report a substituted 1,2,4-triazole Schiff base carrying the ibuprofen moiety, (I).

In (I), Fig. 1, the triazole ring (C8/C9/N2–N4) is approximately planar with a maximum deviation of 0.009 (1)° at atom N2. The dihedral angles formed by the triazole ring with C1–C6 and C11–C16 benzene rings are 13.26 (7) and 75.89 (7)°, respectively. Bond lengths and angles are comparable to a closely related structure (Fun et. al., 2009b). An intramolecular C7—H7A···S1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995), Fig. 1.

In the crystal packing (Fig. 2), pairs of N3—H1N3···S1 hydrogen bonds link molecules into dimers forming R22(8) ring motifs; these stack along the a axis. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Experimental

Compound (I) was obtained by refluxing 4-amino-5-[1-(4-isobutylphenyl)ethyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 4-fluorobenzaldehyde (0.01 mol) in ethanol (50 ml) with 3 drops of concentrated sulfuric acid for 6 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Crystals were obtained from the slow evaporation of an ethanol solution of (I).

Refinement

All H atoms were located from difference Fourier maps and allowed to refine freely [N—H = 0.85 (2) Å; range of C—H = 0.91 (2) - 1.07 (2) Å].

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular interaction is shown by a dashed line.
Fig. 2.
The crystal packing of (I), viewed down the a axis, showing the R22(8) ring motifs. Intermolecular hydrogen bonds are shown by dashed lines.

Crystal data

C21H23FN4SZ = 2
Mr = 382.49F(000) = 404
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7883 (1) ÅCell parameters from 8265 reflections
b = 9.9001 (1) Åθ = 2.3–32.9°
c = 18.4972 (3) ŵ = 0.19 mm1
α = 98.132 (1)°T = 100 K
β = 97.087 (1)°Plate, colourless
γ = 105.997 (1)°0.46 × 0.20 × 0.07 mm
V = 993.90 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7460 independent reflections
Radiation source: fine-focus sealed tube5798 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 33.1°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.919, Tmax = 0.987k = −13→15
31031 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.06w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2752P] where P = (Fo2 + 2Fc2)/3
7460 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.23157 (6)0.40057 (3)0.062645 (17)0.02273 (9)
F11.07698 (17)0.46076 (11)0.34727 (5)0.0384 (2)
N20.09265 (19)0.67553 (11)0.11123 (6)0.0200 (2)
N3−0.2432 (2)0.66569 (12)0.04603 (6)0.0240 (2)
N4−0.1117 (2)0.80841 (12)0.06196 (6)0.0262 (2)
C10.7243 (2)0.63478 (14)0.23907 (7)0.0230 (2)
C20.9179 (2)0.61374 (15)0.28295 (8)0.0265 (3)
C30.8872 (3)0.48191 (16)0.30420 (8)0.0275 (3)
C40.6725 (3)0.37142 (15)0.28390 (8)0.0291 (3)
C50.4798 (3)0.39514 (15)0.24054 (8)0.0270 (3)
C60.5020 (2)0.52512 (13)0.21738 (7)0.0220 (2)
C70.2896 (2)0.54128 (14)0.17189 (7)0.0239 (2)
N10.29999 (19)0.65984 (12)0.15103 (6)0.0219 (2)
C8−0.1269 (2)0.57973 (13)0.07367 (6)0.0207 (2)
C90.0928 (2)0.81133 (13)0.10125 (7)0.0227 (2)
C100.3012 (3)0.94216 (14)0.13560 (7)0.0248 (3)
C110.2842 (2)0.98403 (13)0.21717 (7)0.0210 (2)
C120.4468 (2)0.96157 (14)0.27274 (7)0.0226 (2)
C130.4346 (2)1.00047 (13)0.34731 (7)0.0215 (2)
C140.2607 (2)1.06384 (13)0.36891 (7)0.0198 (2)
C150.0957 (2)1.08449 (14)0.31282 (7)0.0230 (2)
C160.1051 (2)1.04396 (14)0.23829 (7)0.0239 (2)
C170.2509 (2)1.11216 (14)0.44918 (7)0.0232 (2)
C180.3959 (2)1.26943 (14)0.48054 (7)0.0231 (2)
C190.3044 (3)1.06203 (16)0.09161 (9)0.0338 (3)
C200.6693 (3)1.29519 (17)0.48410 (9)0.0302 (3)
C210.3413 (3)1.31418 (18)0.55751 (8)0.0324 (3)
H1A0.739 (3)0.725 (2)0.2216 (10)0.031 (4)*
H2A1.074 (4)0.684 (2)0.2993 (11)0.042 (5)*
H4A0.661 (4)0.277 (2)0.3010 (11)0.042 (5)*
H5A0.325 (4)0.318 (2)0.2259 (11)0.038 (5)*
H7A0.142 (4)0.462 (2)0.1596 (11)0.037 (5)*
H10A0.470 (4)0.922 (2)0.1304 (11)0.035 (5)*
H12A0.570 (3)0.9154 (18)0.2584 (9)0.023 (4)*
H13A0.545 (3)0.985 (2)0.3849 (11)0.035 (5)*
H15A−0.026 (3)1.1270 (19)0.3265 (10)0.030 (4)*
H16A−0.007 (4)1.058 (2)0.2033 (11)0.040 (5)*
H17A0.314 (3)1.0534 (19)0.4791 (10)0.028 (4)*
H17B0.078 (3)1.0959 (18)0.4546 (9)0.024 (4)*
H18A0.347 (3)1.331 (2)0.4477 (11)0.035 (5)*
H19A0.140 (4)1.092 (2)0.0910 (11)0.044 (5)*
H19B0.452 (4)1.149 (2)0.1147 (12)0.047 (6)*
H19C0.323 (4)1.027 (2)0.0392 (11)0.040 (5)*
H20A0.761 (4)1.396 (2)0.5032 (12)0.047 (6)*
H20B0.714 (4)1.268 (2)0.4370 (12)0.041 (5)*
H20C0.723 (4)1.237 (2)0.5162 (12)0.043 (5)*
H21A0.164 (4)1.299 (2)0.5562 (12)0.048 (6)*
H21B0.421 (4)1.416 (2)0.5753 (12)0.042 (5)*
H21C0.394 (4)1.258 (2)0.5923 (11)0.036 (5)*
H1N3−0.384 (4)0.641 (2)0.0196 (11)0.038 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02380 (15)0.01846 (14)0.01925 (15)−0.00197 (10)0.00281 (11)−0.00094 (10)
F10.0338 (5)0.0443 (5)0.0371 (5)0.0151 (4)−0.0013 (4)0.0066 (4)
N20.0209 (5)0.0188 (5)0.0150 (4)−0.0010 (4)0.0017 (3)0.0006 (3)
N30.0234 (5)0.0201 (5)0.0210 (5)−0.0009 (4)−0.0016 (4)−0.0004 (4)
N40.0311 (6)0.0190 (5)0.0210 (5)−0.0011 (4)−0.0011 (4)0.0012 (4)
C10.0241 (6)0.0198 (5)0.0216 (6)0.0017 (4)0.0074 (4)−0.0004 (4)
C20.0224 (6)0.0273 (6)0.0250 (6)0.0024 (5)0.0057 (5)−0.0021 (5)
C30.0287 (6)0.0307 (7)0.0225 (6)0.0101 (5)0.0038 (5)0.0011 (5)
C40.0341 (7)0.0237 (6)0.0285 (7)0.0065 (5)0.0055 (5)0.0056 (5)
C50.0279 (6)0.0217 (6)0.0265 (6)0.0007 (5)0.0039 (5)0.0027 (5)
C60.0235 (6)0.0202 (5)0.0192 (5)0.0023 (4)0.0054 (4)0.0002 (4)
C70.0236 (6)0.0216 (6)0.0217 (6)−0.0002 (4)0.0041 (5)0.0017 (4)
N10.0207 (5)0.0236 (5)0.0171 (5)0.0009 (4)0.0028 (4)0.0015 (4)
C80.0211 (5)0.0209 (5)0.0143 (5)−0.0014 (4)0.0039 (4)−0.0006 (4)
C90.0273 (6)0.0192 (5)0.0159 (5)−0.0012 (4)0.0024 (4)0.0020 (4)
C100.0281 (6)0.0208 (6)0.0174 (5)−0.0035 (5)0.0018 (5)0.0013 (4)
C110.0227 (5)0.0161 (5)0.0178 (5)−0.0029 (4)0.0007 (4)0.0018 (4)
C120.0233 (6)0.0199 (5)0.0211 (6)0.0033 (4)0.0020 (4)0.0005 (4)
C130.0232 (6)0.0198 (5)0.0189 (5)0.0049 (4)−0.0007 (4)0.0024 (4)
C140.0198 (5)0.0175 (5)0.0182 (5)0.0004 (4)0.0015 (4)0.0020 (4)
C150.0183 (5)0.0237 (6)0.0246 (6)0.0038 (4)0.0007 (4)0.0036 (5)
C160.0209 (6)0.0245 (6)0.0215 (6)0.0016 (4)−0.0035 (4)0.0052 (5)
C170.0230 (6)0.0245 (6)0.0199 (6)0.0039 (5)0.0038 (4)0.0029 (5)
C180.0235 (6)0.0239 (6)0.0198 (6)0.0073 (4)0.0004 (4)0.0000 (4)
C190.0446 (9)0.0252 (7)0.0250 (7)−0.0006 (6)0.0034 (6)0.0071 (5)
C200.0236 (6)0.0323 (7)0.0277 (7)0.0019 (5)0.0037 (5)−0.0040 (6)
C210.0293 (7)0.0391 (8)0.0261 (7)0.0126 (6)0.0033 (5)−0.0062 (6)

Geometric parameters (Å, °)

S1—C81.6821 (13)C11—C121.3904 (18)
F1—C31.3577 (16)C11—C161.3976 (19)
N2—C91.3824 (16)C12—C131.3945 (18)
N2—N11.3870 (15)C12—H12A0.989 (16)
N2—C81.3888 (15)C13—C141.3935 (17)
N3—C81.3389 (17)C13—H13A0.941 (19)
N3—N41.3772 (15)C14—C151.3980 (17)
N3—H1N30.85 (2)C14—C171.5071 (17)
N4—C91.3011 (17)C15—C161.3923 (19)
C1—C21.382 (2)C15—H15A0.958 (18)
C1—C61.4055 (18)C16—H16A0.91 (2)
C1—H1A0.977 (18)C17—C181.5392 (19)
C2—C31.387 (2)C17—H17A0.968 (18)
C2—H2A0.96 (2)C17—H17B0.988 (17)
C3—C41.379 (2)C18—C201.524 (2)
C4—C51.385 (2)C18—C211.5272 (19)
C4—H4A1.01 (2)C18—H18A0.989 (19)
C5—C61.3908 (19)C19—H19A1.07 (2)
C5—H5A0.98 (2)C19—H19B1.03 (2)
C6—C71.4618 (19)C19—H19C1.01 (2)
C7—N11.2747 (17)C20—H20A0.98 (2)
C7—H7A0.97 (2)C20—H20B0.96 (2)
C9—C101.5013 (17)C20—H20C0.97 (2)
C10—C191.528 (2)C21—H21A0.99 (2)
C10—C111.5299 (18)C21—H21B0.97 (2)
C10—H10A1.059 (19)C21—H21C0.98 (2)
C9—N2—N1118.18 (10)C11—C12—H12A118.7 (10)
C9—N2—C8108.16 (11)C13—C12—H12A120.3 (10)
N1—N2—C8133.59 (11)C14—C13—C12121.45 (11)
C8—N3—N4114.43 (11)C14—C13—H13A117.7 (12)
C8—N3—H1N3127.2 (13)C12—C13—H13A120.9 (12)
N4—N3—H1N3118.4 (13)C13—C14—C15117.37 (11)
C9—N4—N3103.92 (11)C13—C14—C17122.28 (11)
C2—C1—C6120.41 (13)C15—C14—C17120.33 (11)
C2—C1—H1A121.3 (11)C16—C15—C14121.37 (12)
C6—C1—H1A118.2 (11)C16—C15—H15A120.0 (11)
C1—C2—C3118.32 (13)C14—C15—H15A118.7 (11)
C1—C2—H2A124.2 (12)C15—C16—C11120.84 (12)
C3—C2—H2A117.5 (12)C15—C16—H16A119.0 (13)
F1—C3—C4118.41 (13)C11—C16—H16A120.2 (13)
F1—C3—C2118.51 (13)C14—C17—C18114.35 (11)
C4—C3—C2123.08 (13)C14—C17—H17A109.5 (10)
C3—C4—C5117.71 (13)C18—C17—H17A107.9 (11)
C3—C4—H4A119.6 (12)C14—C17—H17B108.3 (10)
C5—C4—H4A122.6 (12)C18—C17—H17B109.7 (10)
C4—C5—C6121.40 (13)H17A—C17—H17B106.9 (14)
C4—C5—H5A119.0 (11)C20—C18—C21109.98 (11)
C6—C5—H5A119.6 (11)C20—C18—C17111.77 (11)
C5—C6—C1119.08 (13)C21—C18—C17110.13 (12)
C5—C6—C7117.86 (12)C20—C18—H18A107.0 (11)
C1—C6—C7123.06 (12)C21—C18—H18A108.4 (11)
N1—C7—C6119.92 (12)C17—C18—H18A109.4 (12)
N1—C7—H7A121.5 (11)C10—C19—H19A111.1 (11)
C6—C7—H7A118.5 (11)C10—C19—H19B109.4 (12)
C7—N1—N2119.06 (11)H19A—C19—H19B109.8 (16)
N3—C8—N2102.50 (10)C10—C19—H19C107.9 (11)
N3—C8—S1126.62 (10)H19A—C19—H19C109.8 (15)
N2—C8—S1130.88 (10)H19B—C19—H19C108.7 (17)
N4—C9—N2110.96 (11)C18—C20—H20A111.5 (12)
N4—C9—C10126.38 (12)C18—C20—H20B113.4 (12)
N2—C9—C10122.59 (12)H20A—C20—H20B108.1 (18)
C9—C10—C19110.48 (11)C18—C20—H20C109.1 (13)
C9—C10—C11108.88 (10)H20A—C20—H20C109.1 (17)
C19—C10—C11113.34 (11)H20B—C20—H20C105.5 (17)
C9—C10—H10A110.3 (11)C18—C21—H21A111.1 (13)
C19—C10—H10A103.0 (11)C18—C21—H21B110.1 (13)
C11—C10—H10A110.7 (11)H21A—C21—H21B106.5 (17)
C12—C11—C16117.98 (12)C18—C21—H21C110.7 (11)
C12—C11—C10120.42 (12)H21A—C21—H21C107.5 (17)
C16—C11—C10121.60 (11)H21B—C21—H21C110.9 (17)
C11—C12—C13120.95 (12)
C8—N3—N4—C9−0.39 (15)C8—N2—C9—N41.56 (14)
C6—C1—C2—C30.56 (19)N1—N2—C9—C10−3.85 (17)
C1—C2—C3—F1179.96 (12)C8—N2—C9—C10178.80 (11)
C1—C2—C3—C4−0.3 (2)N4—C9—C10—C19−26.92 (19)
F1—C3—C4—C5179.39 (12)N2—C9—C10—C19156.28 (13)
C2—C3—C4—C5−0.3 (2)N4—C9—C10—C1198.16 (15)
C3—C4—C5—C60.8 (2)N2—C9—C10—C11−78.64 (15)
C4—C5—C6—C1−0.5 (2)C9—C10—C11—C12107.13 (14)
C4—C5—C6—C7−179.87 (13)C19—C10—C11—C12−129.48 (14)
C2—C1—C6—C5−0.16 (19)C9—C10—C11—C16−72.11 (15)
C2—C1—C6—C7179.16 (12)C19—C10—C11—C1651.28 (17)
C5—C6—C7—N1178.23 (12)C16—C11—C12—C13−1.31 (18)
C1—C6—C7—N1−1.1 (2)C10—C11—C12—C13179.42 (11)
C6—C7—N1—N2−176.62 (11)C11—C12—C13—C14−0.41 (19)
C9—N2—N1—C7167.93 (12)C12—C13—C14—C151.20 (18)
C8—N2—N1—C7−15.5 (2)C12—C13—C14—C17−177.44 (12)
N4—N3—C8—N21.29 (14)C13—C14—C15—C16−0.28 (18)
N4—N3—C8—S1−178.22 (9)C17—C14—C15—C16178.39 (12)
C9—N2—C8—N3−1.65 (13)C14—C15—C16—C11−1.5 (2)
N1—N2—C8—N3−178.43 (12)C12—C11—C16—C152.23 (18)
C9—N2—C8—S1177.83 (10)C10—C11—C16—C15−178.51 (11)
N1—N2—C8—S11.1 (2)C13—C14—C17—C1892.42 (15)
N3—N4—C9—N2−0.73 (14)C15—C14—C17—C18−86.18 (14)
N3—N4—C9—C10−177.84 (12)C14—C17—C18—C20−66.53 (15)
N1—N2—C9—N4178.91 (11)C14—C17—C18—C21170.91 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.85 (2)2.43 (2)3.2763 (12)172.3 (18)
C7—H7A···S10.96 (2)2.50 (2)3.2415 (13)133.2 (16)
C4—H4A···Cg1ii1.01 (2)2.85 (2)3.6276 (16)133.8 (17)

Symmetry codes: (i) −x−1, −y+1, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2518).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Demirbas, N., Alpay-Karaoğlu, S., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem.39, 793–804. [PubMed]
  • Demirbas, N., Uğurluoğlu, R. & Demirbasx, A. (2002). Bioorg. Med. Chem.10, 3717–3723. [PubMed]
  • Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076–o1077. [PMC free article] [PubMed]
  • Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o1149–o1150. [PMC free article] [PubMed]
  • Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009b). Acta Cryst. E65, o1242–o1243. [PMC free article] [PubMed]
  • Göknur, A., Birsen, T. & Mevlüt, E. (2005). Arch. Pharm. Res.28, 438–442. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography