PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2197.
Published online 2009 August 22. doi:  10.1107/S1600536809032619
PMCID: PMC2969918

N′-[4-(Dimethyl­amino)benzyl­idene]acetohydrazide

Abstract

The title compound, C11H15N3O, crystallizes with two independent mol­ecules per asymmetric unit which differ slightly in their side-chain orientations: the C=N—N—C torsion angle is −176.2 (3)° in one of the mol­ecules and −179.83 (3)° in the other. Each independent mol­ecule adopts a trans configuration with respect to the C=N bond. The two independent mol­ecules are related by a pseudo-inversion center and they exist as a N—H(...)O hydrogen-bonded dimer. The dimers are linked into zigzag chains along [100] by C—H(...)O hydrogen bonds.

Related literature

For general background to this type of compound, see: Cimerman et al. (1997 [triangle]); Offe et al. (1952 [triangle]); Richardson et al. (1988 [triangle]). For related structures, see: Li & Jian (2008 [triangle]); Shang et al. (2007 [triangle]); Tamboura et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2197-scheme1.jpg

Experimental

Crystal data

  • C11H15N3O
  • M r = 205.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2197-efi1.jpg
  • a = 8.619 (4) Å
  • b = 20.063 (3) Å
  • c = 26.231 (3) Å
  • V = 4536 (2) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 223 K
  • 0.25 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.977, T max = 0.979
  • 25277 measured reflections
  • 3944 independent reflections
  • 2266 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.260
  • S = 1.05
  • 3944 reflections
  • 278 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032619/ci2860sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032619/ci2860Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) and Hangzhou Vocational and Technical College for financial support.

supplementary crystallographic information

Comment

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the C═N bond. The N1/N2/O1/C9/C10/C11 and N5/N6/O2/C10/C21/C22 planes form dihedral angles of 4.68 (6)° and 6.93 (5)°, respectively, with the C3-C8 and C14-C19 planes. The dihedral angle between the two independent benzene rings is 88.26 (9)°. Bond lengths and angles are comparable to those observed for related structures (Li et al., 2008; Shang et al., 2007).

The two independent molecules are related by a pseudo inversion center, and in the crystal they exist as N—H···O hydrogen-bonded dimers. The dimers are linked into a zigzag chain along the 'a' axis by C—H···O hydrogen bonds. (Table 1).

Experimental

4-Dimethylaminobenzaldehyde (1.49 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 87% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 490–493 K).

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H15N3OF(000) = 1760
Mr = 205.26Dx = 1.202 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3944 reflections
a = 8.619 (4) Åθ = 1.5–25.0°
b = 20.063 (3) ŵ = 0.08 mm1
c = 26.231 (3) ÅT = 223 K
V = 4536 (2) Å3Block, colourless
Z = 160.25 × 0.21 × 0.19 mm

Data collection

Bruker SMART CCD area-detector diffractometer3944 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
graphiteRint = 0.086
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.977, Tmax = 0.979k = −23→23
25277 measured reflectionsl = −30→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.260w = 1/[σ2(Fo2) + (0.1428P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.009
3944 reflectionsΔρmax = 0.26 e Å3
278 parametersΔρmin = −0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0047 (3)0.29181 (12)−0.13459 (9)0.0780 (8)
O20.1988 (3)0.06574 (13)0.42455 (9)0.0870 (9)
C1−0.2222 (5)0.2853 (2)0.26167 (14)0.0876 (12)
H1A−0.23520.29200.29770.131*
H1B−0.15810.24690.25600.131*
H1C−0.32170.27840.24610.131*
C2−0.0788 (5)0.3912 (2)0.27440 (14)0.0960 (13)
H2A−0.12060.38470.30800.144*
H2B−0.10110.43570.26310.144*
H2C0.03140.38450.27520.144*
C3−0.1822 (4)0.30188 (16)0.15390 (12)0.0642 (9)
H3−0.25540.27150.16570.077*
C4−0.1112 (4)0.34523 (16)0.18857 (12)0.0609 (9)
C5−0.0040 (4)0.38962 (16)0.16863 (13)0.0705 (10)
H50.04500.41970.19030.085*
C60.0317 (4)0.39019 (17)0.11734 (13)0.0711 (10)
H6A0.10390.42080.10530.085*
C7−0.0365 (4)0.34675 (16)0.08350 (12)0.0602 (9)
C8−0.1463 (4)0.30314 (16)0.10280 (12)0.0636 (9)
H8−0.19680.27410.08070.076*
C90.0084 (4)0.34839 (18)0.03007 (12)0.0678 (9)
H90.07810.38090.01940.081*
C10−0.0398 (4)0.27958 (17)−0.09107 (14)0.0675 (10)
C11−0.1489 (5)0.2237 (2)−0.08028 (14)0.0894 (12)
H11A−0.17510.2236−0.04470.134*
H11B−0.10050.1821−0.08900.134*
H11C−0.24150.2292−0.10020.134*
C120.0762 (5)0.1252 (2)0.01346 (13)0.0932 (13)
H12A0.10360.1176−0.02150.140*
H12B0.07970.17210.02060.140*
H12C−0.02680.10870.01960.140*
C130.2661 (6)0.0345 (2)0.02456 (15)0.0972 (14)
H13A0.26790.0387−0.01190.146*
H13B0.2141−0.00600.03380.146*
H13C0.37050.03350.03730.146*
C140.1752 (4)0.09738 (16)0.09815 (12)0.0606 (9)
C150.0720 (5)0.14273 (16)0.12098 (12)0.0684 (10)
H150.01050.16990.10050.082*
C160.0610 (4)0.14740 (16)0.17306 (12)0.0670 (9)
H16−0.00870.17760.18710.080*
C170.1510 (4)0.10824 (15)0.20548 (11)0.0579 (9)
C180.2550 (4)0.06487 (16)0.18297 (12)0.0616 (9)
H180.31760.03840.20360.074*
C190.2681 (4)0.05990 (15)0.13102 (12)0.0647 (9)
H190.34080.03080.11730.078*
C200.1307 (4)0.11238 (16)0.26024 (12)0.0642 (9)
H200.06370.14450.27320.077*
C210.2309 (4)0.05138 (18)0.37994 (13)0.0684 (10)
C220.3373 (4)−0.00500 (18)0.36685 (13)0.0772 (11)
H22A0.40840.00900.34080.116*
H22B0.2775−0.04210.35470.116*
H22C0.3942−0.01810.39670.116*
N1−0.0433 (3)0.30740 (14)−0.00272 (10)0.0689 (8)
N20.0109 (3)0.31648 (14)−0.05201 (10)0.0716 (8)
H20.07940.3468−0.05760.086*
N3−0.1490 (4)0.34348 (16)0.23945 (10)0.0791 (9)
N40.1849 (4)0.09056 (14)0.04632 (10)0.0786 (9)
N50.1997 (3)0.07432 (14)0.29129 (10)0.0647 (8)
N60.1681 (3)0.08653 (14)0.34201 (10)0.0714 (8)
H60.10490.11820.34950.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0901 (19)0.0899 (18)0.0541 (16)0.0010 (14)0.0130 (13)−0.0020 (12)
O20.105 (2)0.107 (2)0.0488 (15)0.0166 (16)0.0105 (14)0.0072 (12)
C10.107 (3)0.093 (3)0.063 (2)0.005 (2)0.020 (2)0.0040 (19)
C20.098 (3)0.123 (3)0.068 (3)−0.004 (3)−0.001 (2)−0.026 (2)
C30.066 (2)0.068 (2)0.058 (2)−0.0080 (17)−0.0004 (17)0.0067 (16)
C40.063 (2)0.069 (2)0.050 (2)0.0069 (17)−0.0043 (16)0.0006 (16)
C50.079 (3)0.069 (2)0.064 (2)−0.0082 (18)−0.002 (2)−0.0084 (17)
C60.080 (3)0.067 (2)0.067 (2)−0.0102 (18)0.003 (2)0.0036 (17)
C70.066 (2)0.0609 (19)0.054 (2)0.0026 (17)−0.0044 (16)0.0072 (15)
C80.072 (2)0.068 (2)0.051 (2)−0.0029 (18)−0.0065 (17)0.0000 (15)
C90.078 (3)0.071 (2)0.054 (2)0.0010 (18)0.0016 (18)0.0029 (17)
C100.069 (2)0.077 (2)0.057 (2)0.0096 (19)0.0052 (18)0.0013 (18)
C110.098 (3)0.097 (3)0.073 (3)−0.023 (2)−0.006 (2)0.006 (2)
C120.114 (3)0.109 (3)0.057 (2)0.002 (3)−0.010 (2)0.010 (2)
C130.135 (4)0.091 (3)0.066 (3)0.011 (3)0.007 (2)−0.010 (2)
C140.073 (2)0.0649 (19)0.0436 (19)−0.0063 (18)−0.0001 (17)−0.0009 (15)
C150.088 (3)0.063 (2)0.054 (2)0.0069 (19)−0.0034 (18)0.0038 (16)
C160.072 (2)0.068 (2)0.062 (2)0.0115 (18)0.0025 (18)−0.0035 (16)
C170.067 (2)0.0607 (19)0.0461 (19)−0.0017 (16)0.0002 (16)0.0010 (14)
C180.068 (2)0.0658 (19)0.052 (2)0.0061 (16)−0.0032 (17)0.0034 (15)
C190.079 (2)0.0608 (19)0.054 (2)0.0037 (17)0.0038 (18)−0.0007 (15)
C200.067 (2)0.072 (2)0.054 (2)0.0025 (18)0.0035 (17)−0.0050 (17)
C210.071 (2)0.087 (2)0.047 (2)−0.0010 (19)0.0036 (18)0.0094 (18)
C220.080 (3)0.083 (2)0.068 (2)0.004 (2)0.0007 (19)0.0059 (18)
N10.076 (2)0.0802 (19)0.0506 (17)0.0032 (15)0.0036 (14)0.0104 (14)
N20.082 (2)0.0794 (18)0.0530 (18)−0.0102 (16)0.0073 (15)0.0002 (14)
N30.095 (2)0.092 (2)0.0505 (18)−0.0090 (18)0.0027 (16)−0.0076 (15)
N40.105 (3)0.083 (2)0.0478 (18)0.0107 (17)0.0013 (16)0.0013 (14)
N50.0686 (19)0.0819 (18)0.0435 (16)0.0004 (15)0.0037 (14)0.0026 (13)
N60.077 (2)0.091 (2)0.0465 (17)0.0135 (16)0.0070 (15)0.0007 (14)

Geometric parameters (Å, °)

O1—C101.229 (4)C12—H12A0.96
O2—C211.236 (4)C12—H12B0.96
C1—N31.449 (5)C12—H12C0.96
C1—H1A0.96C13—N41.443 (5)
C1—H1B0.96C13—H13A0.96
C1—H1C0.96C13—H13B0.96
C2—N31.456 (5)C13—H13C0.96
C2—H2A0.96C14—N41.369 (4)
C2—H2B0.96C14—C191.396 (5)
C2—H2C0.96C14—C151.406 (5)
C3—C81.376 (4)C15—C161.373 (4)
C3—C41.399 (4)C15—H150.93
C3—H30.93C16—C171.394 (4)
C4—N31.374 (4)C16—H160.93
C4—C51.386 (5)C17—C181.381 (4)
C5—C61.380 (4)C17—C201.450 (4)
C5—H50.93C18—C191.371 (4)
C6—C71.376 (5)C18—H180.93
C6—H6A0.93C19—H190.93
C7—C81.384 (5)C20—N51.265 (4)
C7—C91.454 (4)C20—H200.93
C8—H80.93C21—N61.334 (4)
C9—N11.271 (4)C21—C221.496 (5)
C9—H90.93C22—H22A0.96
C10—N21.337 (4)C22—H22B0.96
C10—C111.491 (5)C22—H22C0.96
C11—H11A0.96N1—N21.387 (3)
C11—H11B0.96N2—H20.86
C11—H11C0.96N5—N61.380 (4)
C12—N41.450 (5)N6—H60.86
N3—C1—H1A109.5N4—C13—H13B109.5
N3—C1—H1B109.5H13A—C13—H13B109.5
H1A—C1—H1B109.5N4—C13—H13C109.4
N3—C1—H1C109.5H13A—C13—H13C109.5
H1A—C1—H1C109.5H13B—C13—H13C109.5
H1B—C1—H1C109.5N4—C14—C19121.6 (3)
N3—C2—H2A109.5N4—C14—C15121.7 (3)
N3—C2—H2B109.5C19—C14—C15116.6 (3)
H2A—C2—H2B109.5C16—C15—C14120.8 (3)
N3—C2—H2C109.5C16—C15—H15119.6
H2A—C2—H2C109.5C14—C15—H15119.6
H2B—C2—H2C109.5C15—C16—C17122.0 (3)
C8—C3—C4121.5 (3)C15—C16—H16119.0
C8—C3—H3119.2C17—C16—H16119.0
C4—C3—H3119.2C18—C17—C16117.1 (3)
N3—C4—C5122.8 (3)C18—C17—C20122.6 (3)
N3—C4—C3120.7 (3)C16—C17—C20120.3 (3)
C5—C4—C3116.5 (3)C19—C18—C17121.6 (3)
C6—C5—C4121.4 (3)C19—C18—H18119.2
C6—C5—H5119.3C17—C18—H18119.2
C4—C5—H5119.3C18—C19—C14121.8 (3)
C7—C6—C5121.9 (3)C18—C19—H19119.1
C7—C6—H6A119.0C14—C19—H19119.1
C5—C6—H6A119.1N5—C20—C17123.1 (3)
C6—C7—C8117.2 (3)N5—C20—H20118.4
C6—C7—C9119.6 (3)C17—C20—H20118.4
C8—C7—C9123.3 (3)O2—C21—N6119.5 (3)
C3—C8—C7121.4 (3)O2—C21—C22122.0 (3)
C3—C8—H8119.3N6—C21—C22118.5 (3)
C7—C8—H8119.3C21—C22—H22A109.5
N1—C9—C7123.0 (3)C21—C22—H22B109.5
N1—C9—H9118.5H22A—C22—H22B109.5
C7—C9—H9118.5C21—C22—H22C109.5
O1—C10—N2120.0 (3)H22A—C22—H22C109.5
O1—C10—C11121.5 (3)H22B—C22—H22C109.5
N2—C10—C11118.5 (3)C9—N1—N2115.3 (3)
C10—C11—H11A109.5C10—N2—N1122.1 (3)
C10—C11—H11B109.4C10—N2—H2119.0
H11A—C11—H11B109.5N1—N2—H2119.0
C10—C11—H11C109.5C4—N3—C2119.7 (3)
H11A—C11—H11C109.5C4—N3—C1121.0 (3)
H11B—C11—H11C109.5C2—N3—C1117.2 (3)
N4—C12—H12A109.5C14—N4—C13120.0 (3)
N4—C12—H12B109.5C14—N4—C12120.2 (3)
H12A—C12—H12B109.5C13—N4—C12116.9 (3)
N4—C12—H12C109.5C20—N5—N6114.9 (3)
H12A—C12—H12C109.5C21—N6—N5123.0 (3)
H12B—C12—H12C109.5C21—N6—H6118.5
N4—C13—H13A109.5N5—N6—H6118.5
C8—C3—C4—N3179.7 (3)N4—C14—C19—C18−177.7 (3)
C8—C3—C4—C50.5 (5)C15—C14—C19—C182.7 (5)
N3—C4—C5—C6180.0 (3)C18—C17—C20—N5−4.0 (5)
C3—C4—C5—C6−0.8 (5)C16—C17—C20—N5174.0 (3)
C4—C5—C6—C7−0.3 (5)C7—C9—N1—N2179.6 (3)
C5—C6—C7—C81.6 (5)O1—C10—N2—N1175.8 (3)
C5—C6—C7—C9−178.4 (3)C11—C10—N2—N1−4.8 (5)
C4—C3—C8—C70.9 (5)C9—N1—N2—C10−176.2 (3)
C6—C7—C8—C3−1.9 (5)C5—C4—N3—C22.0 (5)
C9—C7—C8—C3178.1 (3)C3—C4—N3—C2−177.1 (3)
C6—C7—C9—N1176.0 (3)C5—C4—N3—C1−160.9 (3)
C8—C7—C9—N1−4.0 (5)C3—C4—N3—C120.0 (5)
N4—C14—C15—C16178.1 (3)C19—C14—N4—C1313.6 (5)
C19—C14—C15—C16−2.3 (5)C15—C14—N4—C13−166.8 (4)
C14—C15—C16—C170.4 (5)C19—C14—N4—C12173.7 (3)
C15—C16—C17—C181.1 (5)C15—C14—N4—C12−6.6 (5)
C15—C16—C17—C20−177.0 (3)C17—C20—N5—N6178.8 (3)
C16—C17—C18—C19−0.7 (5)O2—C21—N6—N5179.0 (3)
C20—C17—C18—C19177.4 (3)C22—C21—N6—N5−1.7 (5)
C17—C18—C19—C14−1.3 (5)C20—N5—N6—C21−179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.092.930 (4)166
N6—H6···O1ii0.862.042.884 (4)165
C3—H3···O1iii0.932.563.328 (4)140
C11—H11A···N10.962.312.791 (5)110

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2860).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.
  • Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [PMC free article] [PubMed]
  • Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
  • Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.
  • Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography