PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2146.
Published online 2009 August 15. doi:  10.1107/S1600536809031183
PMCID: PMC2969903

5,7-Dimethoxy­isobenzofuran-1(3H)-one

Abstract

The asymmetric unit of the title compound, C10H10O4, which has been isolated from rhizoma Polygonum Cuspidatum, a Chinese folk medicine, contains two crystallographically independent mol­ecules. The mol­ecules are essentially planar, with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak inter­molecular C—H(...)O hydrogen-bonding inter­actions, with a stacking direction of the mol­ecules parallel to [101].

Related literature

For the synthesis of 5,7-dimethoxy­phthalide, see: Talapatra & Monoj (1980 [triangle]); Dang et al. (1999 [triangle]); Orito et al. (1995 [triangle]). For the title compound as an inter­mediate, see: Zuo et al. (2008 [triangle]); Lee et al. (2001 [triangle]). For the title compound as a by­product, see: Fürstner et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2146-scheme1.jpg

Experimental

Crystal data

  • C10H10O4
  • M r = 194.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2146-efi1.jpg
  • a = 8.532 (3) Å
  • b = 25.877 (10) Å
  • c = 8.374 (3) Å
  • β = 104.322 (6)°
  • V = 1791.5 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.12 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.987, T max = 0.989
  • 7489 measured reflections
  • 3216 independent reflections
  • 1766 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.131
  • S = 0.93
  • 3216 reflections
  • 258 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031183/wm2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031183/wm2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (20872179) and the Science and Technology Commission of Shanghai Municipality (STCSM) (08DZ1971504).

supplementary crystallographic information

Comment

The compound 5, 7-dimethoxyphthalide has been previously reported. It could be obtained by different synthetic strategies, e.g. from 5,7-dihydroxyphthalide (Talapatra & Monoj, 1980), 6-iodo-3-methoxybenzyl alcohols (Dang et al., 1999) or 3,5-dimethoxybenzyl alcohol (Orito et al.,1995). It could act as an intermediate product in the process of synthesizing some significant compounds, such as 5,7-dimethoxy-4-methylphthalide and 5,7-dihydroxy-4-methylphthaIide (Zuo et al., 2008), or mycophenolic acid and its analogs (Lee et al., 2001). It was also reported as a byproduct in the synthesis of zearalenone and lasiodiplodin (Fürstner et al., 2000). However, no structural details were provided. In this study, 5,7-dimethoxyphthalide was isolated from the rhizoma Polygonum cuspidatum as colorless prismatic crystals.

The molecule (Fig. 1 ) is essentially planar with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen-bonding interactions with a stacking direction of the molecules parallel to [101] (Fig. 2 ).

Experimental

The slices of the dried roots of P. cuspidatum (10 kg) were extracted with 60% aqueous acetone 3 times (24 h each) at room temperature. The solvent was evaporated in vacuo and some hydrophobic substances precipitated which were filtered off. The filtrate was concentrated to a suitable volume, then chromatographed on a Sephadex LH-20 column eluted with H2O, aqueous MeOH (10%-70%) and 50% acetone successively to give five fractions. The fraction eluated by 10% MeOH was subjected to MCI gel chromatography eluted with gradient aqueous MeOH solvent. The 30% aqueous MeOH eluate from the MCI column afforded the compound 5,7-dimethoxyphthalide as an amorphous powder. The powder was recrystallized in acetone and produced colourless prismatic crystals.

Refinement

The H atoms were refined at calculated positions riding on the parent carbon atoms (C–H = 0.95–0.99 Å) with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip.

Figures

Fig. 1.
The molecular structure of 5,7-dimethoxyphthalide, showing the atom-labelling scheme. H atoms are shown as small spheres of arbitrary radius. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing in the crystal, viewed along the b axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.

Crystal data

C10H10O4F(000) = 816
Mr = 194.18Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 715 reflections
a = 8.532 (3) Åθ = 2.6–21.3°
b = 25.877 (10) ŵ = 0.11 mm1
c = 8.374 (3) ÅT = 293 K
β = 104.322 (6)°Prism, colourless
V = 1791.5 (11) Å30.12 × 0.12 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer3216 independent reflections
Radiation source: fine-focus sealed tube1766 reflections with I > 2σ(I)
graphiteRint = 0.062
[var phi] and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→10
Tmin = 0.987, Tmax = 0.989k = −30→31
7489 measured reflectionsl = −10→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.131w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3216 reflectionsΔρmax = 0.18 e Å3
258 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)

Special details

Experimental. The powder of 5,7-dimethoxyphthalide was solved in acetone and produced colorless crystal.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.3975 (2)0.42391 (7)0.1615 (2)0.0627 (6)
O2A0.2605 (3)0.35976 (8)0.0110 (2)0.0674 (6)
O3A0.4002 (2)0.25798 (7)0.1709 (2)0.0571 (6)
O4A0.8571 (2)0.28610 (7)0.6142 (2)0.0628 (6)
C1A0.3670 (4)0.37248 (11)0.1270 (3)0.0518 (8)
C2A0.4830 (3)0.34270 (10)0.2496 (3)0.0417 (6)
C3A0.5069 (3)0.28902 (10)0.2724 (3)0.0470 (7)
C4A0.6341 (3)0.27237 (10)0.3971 (3)0.0471 (7)
H4A0.65290.23720.41410.057*
C5A0.7359 (3)0.30831 (11)0.4992 (3)0.0487 (7)
C6A0.7112 (3)0.36054 (10)0.4795 (3)0.0486 (7)
H6A0.77800.38420.54780.058*
C7A0.5835 (3)0.37640 (10)0.3545 (3)0.0452 (7)
C8A0.5296 (3)0.43027 (10)0.3046 (3)0.0542 (8)
H8A10.49420.44780.39200.065*
H8A20.61640.45000.27820.065*
C9A0.4125 (4)0.20351 (11)0.2069 (4)0.0644 (9)
H9A10.51770.19140.20250.097*
H9A20.33120.18530.12700.097*
H9A30.39680.19760.31500.097*
C10A0.9664 (4)0.31963 (13)0.7237 (4)0.0764 (10)
H10A1.02020.34150.66140.115*
H10B1.04510.29940.79990.115*
H10C0.90720.34060.78330.115*
O1B−0.0885 (2)0.46776 (7)0.6553 (2)0.0582 (5)
O2B−0.2380 (2)0.53224 (8)0.5190 (2)0.0674 (6)
O3B−0.0891 (2)0.63386 (7)0.6714 (2)0.0551 (5)
O4B0.3667 (2)0.60524 (7)1.1150 (2)0.0539 (5)
C1B−0.1230 (3)0.51938 (12)0.6263 (3)0.0522 (8)
C2B−0.0013 (3)0.54864 (11)0.7460 (3)0.0454 (7)
C3B0.0172 (3)0.60196 (10)0.7725 (3)0.0415 (7)
C4B0.1434 (3)0.61849 (10)0.8969 (3)0.0440 (7)
H4B0.15900.65370.91620.053*
C5B0.2488 (3)0.58354 (10)0.9954 (3)0.0420 (6)
C6B0.2297 (3)0.53046 (10)0.9714 (3)0.0418 (6)
H6B0.29880.50691.03750.050*
C7B0.1032 (3)0.51477 (9)0.8449 (3)0.0403 (6)
C8B0.0538 (3)0.46110 (10)0.7869 (3)0.0522 (7)
H8B10.13860.44420.74770.063*
H8B20.03020.44060.87500.063*
C9B−0.0723 (4)0.68778 (10)0.7035 (4)0.0620 (8)
H9B1−0.08630.69480.81170.093*
H9B2−0.15270.70620.62320.093*
H9B30.03350.69880.69730.093*
C10B0.4778 (3)0.57130 (11)1.2222 (3)0.0589 (8)
H10D0.41920.54851.27690.088*
H10E0.55310.59131.30280.088*
H10F0.53560.55141.15870.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0734 (15)0.0519 (13)0.0597 (13)0.0139 (11)0.0105 (11)0.0112 (10)
O2A0.0663 (14)0.0782 (15)0.0517 (13)0.0101 (12)0.0029 (11)0.0066 (11)
O3A0.0585 (13)0.0487 (13)0.0580 (12)0.0039 (10)0.0028 (10)−0.0025 (10)
O4A0.0558 (12)0.0596 (13)0.0618 (13)0.0065 (10)−0.0066 (11)−0.0011 (10)
C1A0.055 (2)0.059 (2)0.0442 (18)0.0101 (16)0.0194 (16)0.0078 (15)
C2A0.0409 (16)0.0434 (16)0.0435 (16)0.0030 (13)0.0157 (13)0.0015 (13)
C3A0.0446 (17)0.0492 (18)0.0479 (18)−0.0023 (14)0.0129 (14)−0.0027 (14)
C4A0.0491 (17)0.0413 (16)0.0515 (17)0.0026 (13)0.0132 (15)−0.0009 (13)
C5A0.0420 (17)0.0535 (19)0.0498 (17)0.0078 (14)0.0095 (14)0.0018 (14)
C6A0.0468 (18)0.0459 (17)0.0530 (18)−0.0022 (13)0.0120 (15)−0.0059 (13)
C7A0.0444 (17)0.0441 (17)0.0520 (17)0.0035 (13)0.0215 (14)0.0037 (14)
C8A0.064 (2)0.0491 (18)0.0544 (18)0.0077 (14)0.0233 (16)0.0054 (14)
C9A0.069 (2)0.0492 (19)0.071 (2)−0.0037 (15)0.0088 (17)−0.0008 (15)
C10A0.068 (2)0.078 (2)0.069 (2)0.0022 (18)−0.0115 (18)−0.0118 (18)
O1B0.0522 (13)0.0547 (13)0.0659 (13)−0.0078 (10)0.0111 (10)−0.0179 (10)
O2B0.0443 (12)0.0910 (16)0.0590 (13)−0.0001 (12)−0.0020 (10)−0.0168 (11)
O3B0.0514 (12)0.0544 (13)0.0538 (12)0.0078 (10)0.0018 (9)0.0017 (10)
O4B0.0504 (12)0.0478 (11)0.0521 (12)0.0024 (9)−0.0089 (10)−0.0010 (9)
C1B0.0381 (18)0.067 (2)0.0520 (19)−0.0063 (15)0.0115 (15)−0.0141 (15)
C2B0.0382 (16)0.0581 (18)0.0409 (16)−0.0021 (14)0.0117 (13)−0.0038 (14)
C3B0.0381 (16)0.0455 (17)0.0410 (16)0.0036 (13)0.0098 (13)0.0033 (13)
C4B0.0428 (16)0.0402 (16)0.0474 (16)−0.0020 (13)0.0080 (14)0.0000 (13)
C5B0.0386 (16)0.0485 (18)0.0387 (15)−0.0018 (13)0.0090 (13)−0.0029 (13)
C6B0.0381 (16)0.0438 (16)0.0437 (16)0.0047 (12)0.0107 (13)0.0030 (12)
C7B0.0417 (16)0.0397 (16)0.0431 (15)0.0003 (13)0.0175 (13)−0.0005 (13)
C8B0.0486 (18)0.0493 (18)0.0581 (18)−0.0027 (14)0.0118 (14)−0.0050 (14)
C9B0.064 (2)0.050 (2)0.068 (2)0.0100 (15)0.0074 (16)0.0063 (15)
C10B0.0473 (19)0.062 (2)0.0578 (19)0.0068 (15)−0.0056 (15)−0.0028 (15)

Geometric parameters (Å, °)

O1A—C1A1.373 (3)O1B—C1B1.376 (3)
O1A—C8A1.437 (3)O1B—C8B1.434 (3)
O2A—C1A1.200 (3)O2B—C1B1.202 (3)
O3A—C3A1.346 (3)O3B—C3B1.357 (3)
O3A—C9A1.440 (3)O3B—C9B1.422 (3)
O4A—C5A1.355 (3)O4B—C5B1.354 (3)
O4A—C10A1.428 (3)O4B—C10B1.434 (3)
C1A—C2A1.458 (4)C1B—C2B1.463 (4)
C2A—C7A1.377 (3)C2B—C7B1.372 (3)
C2A—C3A1.410 (4)C2B—C3B1.400 (4)
C3A—C4A1.376 (3)C3B—C4B1.368 (3)
C4A—C5A1.408 (4)C4B—C5B1.393 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.371 (4)C5B—C6B1.392 (4)
C6A—C7A1.374 (3)C6B—C7B1.373 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.495 (3)C7B—C8B1.497 (3)
C8A—H8A10.9700C8B—H8B10.9700
C8A—H8A20.9700C8B—H8B20.9700
C9A—H9A10.9599C9B—H9B10.9599
C9A—H9A20.9599C9B—H9B20.9599
C9A—H9A30.9599C9B—H9B30.9599
C10A—H10A0.9599C10B—H10D0.9599
C10A—H10B0.9599C10B—H10E0.9599
C10A—H10C0.9599C10B—H10F0.9599
C1A—O1A—C8A110.8 (2)C1B—O1B—C8B110.8 (2)
C3A—O3A—C9A116.7 (2)C3B—O3B—C9B117.3 (2)
C5A—O4A—C10A117.5 (2)C5B—O4B—C10B117.7 (2)
O2A—C1A—O1A120.2 (3)O2B—C1B—O1B120.0 (3)
O2A—C1A—C2A132.1 (3)O2B—C1B—C2B132.7 (3)
O1A—C1A—C2A107.7 (2)O1B—C1B—C2B107.3 (2)
C7A—C2A—C3A119.4 (2)C7B—C2B—C3B120.2 (2)
C7A—C2A—C1A108.8 (2)C7B—C2B—C1B109.1 (3)
C3A—C2A—C1A131.8 (3)C3B—C2B—C1B130.6 (3)
O3A—C3A—C4A125.1 (3)O3B—C3B—C4B124.3 (2)
O3A—C3A—C2A116.7 (2)O3B—C3B—C2B118.0 (2)
C4A—C3A—C2A118.2 (2)C4B—C3B—C2B117.7 (2)
C3A—C4A—C5A120.4 (3)C3B—C4B—C5B121.3 (2)
C3A—C4A—H4A119.8C3B—C4B—H4B119.4
C5A—C4A—H4A119.8C5B—C4B—H4B119.4
O4A—C5A—C6A124.8 (3)O4B—C5B—C6B123.7 (2)
O4A—C5A—C4A113.5 (2)O4B—C5B—C4B114.9 (2)
C6A—C5A—C4A121.6 (3)C6B—C5B—C4B121.3 (2)
C5A—C6A—C7A117.1 (2)C7B—C6B—C5B116.4 (2)
C5A—C6A—H6A121.5C7B—C6B—H6B121.8
C7A—C6A—H6A121.5C5B—C6B—H6B121.8
C6A—C7A—C2A123.3 (2)C2B—C7B—C6B123.1 (2)
C6A—C7A—C8A128.5 (3)C2B—C7B—C8B107.9 (2)
C2A—C7A—C8A108.2 (2)C6B—C7B—C8B129.0 (2)
O1A—C8A—C7A104.5 (2)O1B—C8B—C7B104.8 (2)
O1A—C8A—H8A1110.9O1B—C8B—H8B1110.8
C7A—C8A—H8A1110.9C7B—C8B—H8B1110.8
O1A—C8A—H8A2110.9O1B—C8B—H8B2110.8
C7A—C8A—H8A2110.9C7B—C8B—H8B2110.8
H8A1—C8A—H8A2108.9H8B1—C8B—H8B2108.9
O3A—C9A—H9A1109.5O3B—C9B—H9B1109.5
O3A—C9A—H9A2109.5O3B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
O3A—C9A—H9A3109.5O3B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
O4A—C10A—H10A109.5O4B—C10B—H10D109.5
O4A—C10A—H10B109.5O4B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
O4A—C10A—H10C109.5O4B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C8A—O1A—C1A—O2A−179.8 (2)C8B—O1B—C1B—O2B179.5 (2)
C8A—O1A—C1A—C2A−0.5 (3)C8B—O1B—C1B—C2B−1.5 (3)
O2A—C1A—C2A—C7A178.2 (3)O2B—C1B—C2B—C7B178.6 (3)
O1A—C1A—C2A—C7A−1.0 (3)O1B—C1B—C2B—C7B−0.3 (3)
O2A—C1A—C2A—C3A−0.6 (5)O2B—C1B—C2B—C3B0.5 (5)
O1A—C1A—C2A—C3A−179.8 (3)O1B—C1B—C2B—C3B−178.5 (2)
C9A—O3A—C3A—C4A6.2 (4)C9B—O3B—C3B—C4B−3.4 (4)
C9A—O3A—C3A—C2A−172.6 (2)C9B—O3B—C3B—C2B177.8 (2)
C7A—C2A—C3A—O3A177.0 (2)C7B—C2B—C3B—O3B180.0 (2)
C1A—C2A—C3A—O3A−4.3 (4)C1B—C2B—C3B—O3B−2.0 (4)
C7A—C2A—C3A—C4A−1.9 (4)C7B—C2B—C3B—C4B1.1 (4)
C1A—C2A—C3A—C4A176.8 (3)C1B—C2B—C3B—C4B179.1 (2)
O3A—C3A—C4A—C5A−178.2 (2)O3B—C3B—C4B—C5B−179.5 (2)
C2A—C3A—C4A—C5A0.6 (4)C2B—C3B—C4B—C5B−0.7 (4)
C10A—O4A—C5A—C6A0.5 (4)C10B—O4B—C5B—C6B0.2 (4)
C10A—O4A—C5A—C4A−179.9 (2)C10B—O4B—C5B—C4B179.1 (2)
C3A—C4A—C5A—O4A−178.9 (2)C3B—C4B—C5B—O4B−179.2 (2)
C3A—C4A—C5A—C6A0.7 (4)C3B—C4B—C5B—C6B−0.2 (4)
O4A—C5A—C6A—C7A179.0 (2)O4B—C5B—C6B—C7B179.6 (2)
C4A—C5A—C6A—C7A−0.6 (4)C4B—C5B—C6B—C7B0.8 (4)
C5A—C6A—C7A—C2A−0.8 (4)C3B—C2B—C7B—C6B−0.6 (4)
C5A—C6A—C7A—C8A−179.5 (3)C1B—C2B—C7B—C6B−179.0 (2)
C3A—C2A—C7A—C6A2.1 (4)C3B—C2B—C7B—C8B−179.8 (2)
C1A—C2A—C7A—C6A−176.9 (2)C1B—C2B—C7B—C8B1.8 (3)
C3A—C2A—C7A—C8A−178.9 (2)C5B—C6B—C7B—C2B−0.4 (4)
C1A—C2A—C7A—C8A2.1 (3)C5B—C6B—C7B—C8B178.7 (2)
C1A—O1A—C8A—C7A1.7 (3)C1B—O1B—C8B—C7B2.5 (3)
C6A—C7A—C8A—O1A176.6 (2)C2B—C7B—C8B—O1B−2.6 (3)
C2A—C7A—C8A—O1A−2.3 (3)C6B—C7B—C8B—O1B178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6A—H6A···O1Bi0.932.513.397 (3)161
C8A—H8A1···O2Bii0.972.533.337 (3)140
C6B—H6B···O1Aiii0.932.443.325 (3)159

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2246).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dang, Q., Brown, B. S., Poelje, P. D., Colby, T. J. & Erion, M. D. (1999). Bioorg. Med. Chem. Lett.9, 1505–1510. [PubMed]
  • Fürstner, A., Thiel, O. R., Kindler, N. & Bartkowska, B. (2000). J. Org. Chem.65, 7990–7995. [PubMed]
  • Lee, Y., Fujiwara, Y., Ujita, K., Nagatomo, M., Ohata, H. & Shimizu, I. (2001). Bull. Chem. Soc. Jpn, 74, 1437–1443.
  • Orito, K., Miyazawa, M. & Suginome, H. (1995). Tetrahedron, 51, 2489–2496.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Talapatra, B. & Monoj, K. R. (1980). Indian J. Chem. Sect. B, 19, 927–929.
  • Zuo, L., Yao, S. Y. & Duan, W. H. (2008). Chin. J. Org. Chem.28, 1982–1985.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography