PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1152–m1153.
Published online 2009 August 29. doi:  10.1107/S1600536809033947
PMCID: PMC2969896

Poly[[diaqua­hemi-μ4-oxalato-μ2-oxalato-praseodymium(III)] monohydrate]

Abstract

In the title complex, {[Pr(C2O4)1.5(H2O)2]·H2O}n, the PrIII ion, which lies on a crystallographic inversion centre, is coordinated by seven O atoms from four oxalate ligands and two O atoms from two water ligands; further Pr—O coordination from tetra­dentate oxalate ligands forms a three-dimensional structure. The compound crystallized as a monohydrate, the water mol­ecule occupying space in small voids and being secured by O—H(...)O hydrogen bonding as an acceptor from ligand water H atoms and as a donor to oxalate O-acceptor sites.

Related literature

For background to lanthanide oxalates and their preparation, see: Hansson (1970 [triangle], 1972 [triangle], 1973a [triangle], 1973b [triangle]); Michaelides et al. (1988 [triangle]); Ollendorf & Weigel (1969 [triangle]); Steinfink & Brunton (1970 [triangle]); Trollet et al. (1998 [triangle]); Trombe (2003 [triangle]); Unaleroglu et al. (1997 [triangle]). For related structures, see: Trombe et al. (2004 [triangle]); Barrett Adams et al. (1998 [triangle]); Beagley et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1152-scheme1.jpg

Experimental

Crystal data

  • [Pr(C2O4)1.5(H2O)2]·H2O
  • M r = 326.99
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1152-efi1.jpg
  • a = 6.0367 (12) Å
  • b = 7.6222 (15) Å
  • c = 8.9353 (18) Å
  • α = 98.330 (4)°
  • β = 99.814 (3)°
  • γ = 96.734 (4)°
  • V = 396.58 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.17 mm−1
  • T = 273 K
  • 0.18 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.341, T max = 0.542
  • 2140 measured reflections
  • 1521 independent reflections
  • 1450 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.075
  • S = 1.00
  • 1521 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −1.50 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033947/nk2001sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033947/nk2001Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the High-Tech Research Institute of Nanjing University for supporting this work.

supplementary crystallographic information

Comment

In the last decade considerable attention has been afforded to the structures and properties of lanthanide oxalates due to their ability to act as precursors of lanthanide oxides. Some single crystals of lanthanide oxalates, such as[Ln(C2O4)3(H2O)4].(H2O) (Ln = Sc or Yb), [Ln2(C2O4)3(H2O)6].4H2O (Ln = La, Ce, Pr or Nd) and [Nd2(C2O4)3(H2O)6] have been obtained either in silica gel (Ollendorff & Weigel, 1969), by hydrothermal reaction (Michaelides et al., 1988) or by other methods (Hansson, 1970, 1972, 1973a,b; Unaleroglu et al., 1997; Trollet et al., 1998; Trombe, 2003). Crystals of [Ln(C2O4)(HC2O4)].4H2O (Ln = Er or Tm) were prepared by saturating a boiling solution of oxalic acid in 3 M H2SO4 with the lanthanide oxide and then slowly cooling to 273 K (Steinfink & Brunton, 1970). However, a few praseodymium oxalate complex has been reported. The present paper is concerned with a new crystal structure of praseodymium oxalate complex with a three-dimensional network structure.

The asymmetric unit of the title compound, [Pr(C2O4)1.5(H2O)2].(H2O), (I), is shown in Fig. 1. The Pr atom lies on an inversion centre and is coordinated by seven O atoms [O1, O1iv, O2ii, O3, O4iii, O5 and O6i] from four oxlate ligands, and two O atoms from two aqua ligands, thereby forming a slightly distorted PrO9 polyhedral coordination geometry. The Pr—O bond distances range from 2.451 (4) Å to 2.608 (3) Å, in agreement with those in compounds (Trombe et al. (2004); Barrett Adams et al. (1998)).

In the complex, the equivalent Pr atom are connected is coordinated by seven O atoms from four oxalate ligands and two O atoms from water ligands. Further Pr–O coordination from the tetradentate oxalate ligands forms a three-dimensional structure (Fig.2). The compound crystallized as a monohydrate; this water molecule occupies space in small voids and is secured by O–H···O hydrogen bonding as an acceptor from ligand water H-atoms and as a donor to oxalate O acceptor sites.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Pr(NO3)3.6H2O (0.05 mmol, 0.023 g), Na2C2O4(0.075 mmol, 0.011 g), and deionized water (10 ml) were mixed together. The mixture was sealed in a Teflon-line autoclave and then heated at 443 K for 5 d under autogenous pressure and then cooled to room temperature. Green crystals were obtained.

Refinement

All non-hydrogen atoms were refined anisotropically. The water H atoms were located in a difference Fourier map and refined with a distance restraint of O-H = 0.83-0.85 Å, and with Uiso(H) = 1.5Uiso(O).

Figures

Fig. 1.
Molecular structure of (I), showing 50% probability displacement ellipsoids. [symmetry codes:(i) -x + 2,-y + 1,-z + 1; (ii) -x + 3,-y + 2,-z + 1; (iii) -x + 2,-y + 1,-z; (iv) -x + 2,-y + 2,-z + 1.
Fig. 2.
The unit cell packing diagram of (I).

Crystal data

[Pr(C2O4)1.5(H2O)2]·H2OZ = 2
Mr = 326.99F(000) = 310
Triclinic, P1Dx = 2.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0367 (12) ÅCell parameters from 905 reflections
b = 7.6222 (15) Åθ = 3.3–28.3°
c = 8.9353 (18) ŵ = 6.17 mm1
α = 98.330 (4)°T = 273 K
β = 99.814 (3)°Block, green
γ = 96.734 (4)°0.18 × 0.16 × 0.10 mm
V = 396.58 (14) Å3

Data collection

Bruker SMART APEX CCD diffractometer1521 independent reflections
Radiation source: fine-focus sealed tube1450 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→7
Tmin = 0.341, Tmax = 0.542k = −9→8
2140 measured reflectionsl = −10→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.049P)2 + 1.09P] where P = (Fo2 + 2Fc2)/3
1521 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −1.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pr11.00780 (5)0.80762 (4)0.29489 (3)0.01182 (13)
C11.4452 (9)1.0278 (7)0.5703 (6)0.0155 (11)
C21.0808 (10)0.5659 (7)−0.0322 (7)0.0163 (12)
C30.8789 (9)0.5155 (7)0.5109 (6)0.0157 (11)
O11.2322 (6)0.9964 (5)0.5514 (4)0.0156 (8)
O21.5785 (7)1.1009 (6)0.6910 (5)0.0220 (9)
O31.1296 (7)0.7232 (5)0.0431 (5)0.0195 (9)
O41.1455 (7)0.5077 (5)−0.1515 (5)0.0217 (9)
O50.8004 (7)0.6413 (5)0.4552 (5)0.0195 (9)
O60.7818 (7)0.4116 (6)0.5849 (5)0.0230 (9)
O1W0.6751 (7)0.8292 (7)0.0928 (5)0.0310 (11)
H1WA0.55810.85340.12600.046*
H1WB0.62990.77710.00110.046*
O2W1.0612 (8)1.0993 (6)0.2071 (5)0.0288 (10)
H2WA1.16531.18720.22270.043*
H2WB0.97521.10290.12390.043*
O3W0.4213 (9)0.3694 (7)0.2101 (6)0.0420 (13)
H3WA0.41030.43390.29220.063*
H3WB0.55900.38230.20310.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pr10.01064 (19)0.01179 (18)0.01243 (18)0.00024 (12)0.00360 (12)−0.00045 (12)
C10.012 (3)0.016 (3)0.019 (3)0.001 (2)0.005 (2)0.001 (2)
C20.015 (3)0.016 (3)0.018 (3)0.002 (2)0.005 (2)0.002 (2)
C30.016 (3)0.016 (3)0.014 (3)0.002 (2)0.004 (2)0.000 (2)
O10.0075 (19)0.019 (2)0.020 (2)0.0013 (15)0.0047 (15)−0.0003 (16)
O20.013 (2)0.032 (2)0.016 (2)−0.0027 (17)0.0036 (16)−0.0062 (18)
O30.023 (2)0.016 (2)0.017 (2)−0.0029 (16)0.0072 (17)−0.0033 (16)
O40.025 (2)0.018 (2)0.020 (2)−0.0062 (17)0.0118 (17)−0.0028 (17)
O50.021 (2)0.019 (2)0.023 (2)0.0084 (17)0.0089 (17)0.0085 (17)
O60.017 (2)0.026 (2)0.031 (2)0.0070 (18)0.0095 (18)0.0138 (19)
O1W0.015 (2)0.053 (3)0.023 (2)0.010 (2)0.0049 (18)−0.005 (2)
O2W0.029 (3)0.021 (2)0.035 (3)−0.0021 (19)0.001 (2)0.013 (2)
O3W0.029 (3)0.050 (3)0.038 (3)−0.013 (2)0.013 (2)−0.017 (2)

Geometric parameters (Å, °)

Pr1—O52.448 (4)C2—C2iii1.555 (11)
Pr1—O2W2.466 (4)C3—O51.248 (7)
Pr1—O6i2.472 (4)C3—O61.258 (7)
Pr1—O2ii2.490 (4)C3—C3i1.548 (11)
Pr1—O1W2.500 (4)O1—Pr1iv2.609 (4)
Pr1—O32.504 (4)O2—Pr1ii2.490 (4)
Pr1—O4iii2.541 (4)O4—Pr1iii2.541 (4)
Pr1—O12.586 (4)O6—Pr1i2.472 (4)
Pr1—O1iv2.609 (4)O1W—H1WA0.8413
C1—O21.243 (7)O1W—H1WB0.8417
C1—O11.258 (7)O2W—H2WA0.8412
C1—C1ii1.546 (11)O2W—H2WB0.8372
C2—O41.238 (7)O3W—H3WA0.8386
C2—O31.263 (7)O3W—H3WB0.8400
O5—Pr1—O2W142.99 (15)O6i—Pr1—O1iv120.77 (14)
O5—Pr1—O6i65.89 (14)O2ii—Pr1—O1iv121.99 (13)
O2W—Pr1—O6i142.54 (15)O1W—Pr1—O1iv77.27 (13)
O5—Pr1—O2ii131.79 (14)O3—Pr1—O1iv146.78 (13)
O2W—Pr1—O2ii71.54 (15)O4iii—Pr1—O1iv122.88 (13)
O6i—Pr1—O2ii71.37 (14)O1—Pr1—O1iv65.40 (14)
O5—Pr1—O1W97.65 (15)O2—C1—O1126.7 (5)
O2W—Pr1—O1W70.26 (16)O2—C1—C1ii116.0 (6)
O6i—Pr1—O1W142.27 (16)O1—C1—C1ii117.3 (6)
O2ii—Pr1—O1W130.26 (15)O4—C2—O3126.8 (5)
O5—Pr1—O3133.93 (13)O4—C2—C2iii117.5 (6)
O2W—Pr1—O378.07 (15)O3—C2—C2iii115.7 (6)
O6i—Pr1—O392.40 (14)O5—C3—O6126.5 (5)
O2ii—Pr1—O367.24 (13)O5—C3—C3i117.1 (6)
O1W—Pr1—O374.66 (14)O6—C3—C3i116.4 (6)
O5—Pr1—O4iii70.30 (13)C1—O1—Pr1118.7 (3)
O2W—Pr1—O4iii132.32 (15)C1—O1—Pr1iv123.3 (3)
O6i—Pr1—O4iii69.96 (15)Pr1—O1—Pr1iv114.60 (14)
O2ii—Pr1—O4iii114.58 (14)C1—O2—Pr1ii123.5 (4)
O1W—Pr1—O4iii72.53 (15)C2—O3—Pr1121.8 (4)
O3—Pr1—O4iii64.03 (13)C2—O4—Pr1iii120.5 (4)
O5—Pr1—O185.86 (13)C3—O5—Pr1120.4 (4)
O2W—Pr1—O181.79 (14)C3—O6—Pr1i119.7 (4)
O6i—Pr1—O177.20 (14)Pr1—O1W—H1WA115.2
O2ii—Pr1—O163.42 (12)Pr1—O1W—H1WB132.7
O1W—Pr1—O1137.77 (14)H1WA—O1W—H1WB106.2
O3—Pr1—O1130.36 (13)Pr1—O2W—H2WA136.4
O4iii—Pr1—O1145.06 (13)Pr1—O2W—H2WB113.6
O5—Pr1—O1iv67.14 (13)H2WA—O2W—H2WB107.3
O2W—Pr1—O1iv76.00 (14)H3WA—O3W—H3WB107.4
O2—C1—O1—Pr1−172.7 (5)C2iii—C2—O3—Pr16.3 (8)
C1ii—C1—O1—Pr18.0 (8)O5—Pr1—O3—C21.9 (5)
O2—C1—O1—Pr1iv29.2 (8)O2W—Pr1—O3—C2−156.5 (4)
C1ii—C1—O1—Pr1iv−150.1 (5)O6i—Pr1—O3—C260.1 (4)
O5—Pr1—O1—C1133.4 (4)O2ii—Pr1—O3—C2128.7 (5)
O2W—Pr1—O1—C1−81.6 (4)O1W—Pr1—O3—C2−83.9 (4)
O6i—Pr1—O1—C167.2 (4)O4iii—Pr1—O3—C2−6.2 (4)
O2ii—Pr1—O1—C1−8.2 (4)O1—Pr1—O3—C2135.3 (4)
O1W—Pr1—O1—C1−129.8 (4)O1iv—Pr1—O3—C2−117.2 (4)
O3—Pr1—O1—C1−15.0 (5)O3—C2—O4—Pr1iii−174.2 (5)
O4iii—Pr1—O1—C187.3 (4)C2iii—C2—O4—Pr1iii4.8 (9)
O1iv—Pr1—O1—C1−159.9 (5)O6—C3—O5—Pr1−174.3 (5)
O5—Pr1—O1—Pr1iv−66.72 (16)C3i—C3—O5—Pr16.5 (8)
O2W—Pr1—O1—Pr1iv78.30 (17)O2W—Pr1—O5—C3−154.9 (4)
O6i—Pr1—O1—Pr1iv−132.92 (18)O6i—Pr1—O5—C3−6.5 (4)
O2ii—Pr1—O1—Pr1iv151.7 (2)O2ii—Pr1—O5—C3−36.2 (5)
O1W—Pr1—O1—Pr1iv30.1 (3)O1W—Pr1—O5—C3138.0 (4)
O3—Pr1—O1—Pr1iv144.93 (15)O3—Pr1—O5—C361.9 (5)
O4iii—Pr1—O1—Pr1iv−112.8 (2)O4iii—Pr1—O5—C369.7 (4)
O1iv—Pr1—O1—Pr1iv0.0O1—Pr1—O5—C3−84.4 (4)
O1—C1—O2—Pr1ii−171.6 (4)O1iv—Pr1—O5—C3−149.4 (4)
C1ii—C1—O2—Pr1ii7.8 (9)O5—C3—O6—Pr1i−173.9 (4)
O4—C2—O3—Pr1−174.7 (5)C3i—C3—O6—Pr1i5.3 (8)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3, −y+2, −z+1; (iii) −x+2, −y+1, −z; (iv) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O1W0.842.552.858 (7)103
O1W—H1WA···O2iv0.841.962.694 (6)146
O1W—H1WA···O3v0.842.603.235 (6)133
O1W—H1WB···O3Wvi0.842.002.833 (6)169
O2W—H2WA···O3Wvii0.841.982.807 (7)166
O2W—H2WB···O3viii0.842.202.919 (6)144
O3W—H3WA···O6ix0.842.082.829 (7)149
O3W—H3WB···O4iii0.842.032.833 (6)159

Symmetry codes: (iv) −x+2, −y+2, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z; (vii) x+1, y+1, z; (viii) −x+2, −y+2, −z; (ix) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2001).

References

  • Barrett Adams, D. M. Y., Kahwa, I. A. & Mague, J. T. (1998). New J. Chem 22, 919–921.
  • Beagley, B., Pritchard, R. G., Evmiridis, N. P., Michailides, A. & Skoulika, S. (1988). Acta Cryst. C44, 174–175.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hansson, E. (1970). Acta Chem. Scand 24, 2969–2982. [PubMed]
  • Hansson, E. (1972). Acta Chem. Scand 26, 1337–1350.
  • Hansson, E. (1973a). Acta Chem. Scand 27, 823–834.
  • Hansson, E. (1973b). Acta Chem. Scand 27, 2852–2860.
  • Michaelides, A., Skoulika, S. & Aubry, A. (1988). Mater. Res. Bull.23, 579–585.
  • Ollendorf, W. & Weigel, F. (1969). Inorg. Nucl. Chem. Lett 5, 263–269.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steinfink, H. & Brunton, G. D. (1970). Inorg. Chem.9, 2112–2117.
  • Trollet, D., Rome, S. & Mosset, A. (1998). Polyhedron, 17, 3977–3978.
  • Trombe, J. C. (2003). J. Chem. Crystallogr.33, 19–26.
  • Trombe, J. C. & Mohanu, A. (2004). Solid State Sci.6, 1403–1419.
  • Unaleroglu, C., Zumreoglu-Karan, B. & Zencir, Y. (1997). Polyhedron, 16, 2155–2161.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography