PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2263.
Published online 2009 August 29. doi:  10.1107/S1600536809033844
PMCID: PMC2969895

N,N′-Bis[(E)-4-nitro­benzyl­idene]-4,4′-oxydianiline

Abstract

The title compound, C26H18N4O5, can be regarded as an extended ether with two terminal nitro groups. The two aryl rings bonded to the central O atom form a dihedral angle of 75.72 (6)°, and the terminal nitro groups are slightly twisted [by 6.4 (2) and 3.3 (3)°] from the benzene rings to which they are attached. The crystal packing exhibits weak inter­molecular C—H(...)O hydrogen bonds and π–π inter­actions [centroid–centroid distances = 3.794 (3) Å].

Related literature

For applications of coordination polymers, see: Barnett & Champness (2003 [triangle]); Batten et al. (2009 [triangle]); Perry et al. (2009 [triangle]). For bis­(pyridine)-, bis­(furan)-, bis­(thio­phene)-, and (pyridine–amine)-type linking ligands as well as compounds that are structurally close to the title compound, see Yun et al. (2009 [triangle]) and references therein.

An external file that holds a picture, illustration, etc.
Object name is e-65-o2263-scheme1.jpg

Experimental

Crystal data

  • C26H18N4O5
  • M r = 466.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2263-efi1.jpg
  • a = 8.3322 (11) Å
  • b = 9.0716 (16) Å
  • c = 17.107 (2) Å
  • α = 74.714 (9)°
  • β = 78.885 (10)°
  • γ = 64.643 (10)°
  • V = 1122.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.52 × 0.32 × 0.26 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 4200 measured reflections
  • 3909 independent reflections
  • 2972 reflections with I > 2σ(I)
  • R int = 0.015
  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.114
  • S = 1.02
  • 3909 reflections
  • 389 parameters
  • All H-atom parameters refined
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: XSCANS (Siemens, 1995 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033844/cv2603sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033844/cv2603Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Korean Science and Engin­eering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant No. 2009–007996).

supplementary crystallographic information

Comment

Coordination polymers gain continuous attention due to their desirable zeolite-like properties applicable to catalysis, nonlinear optical activity, spin crossover, luminescence, long-range magnetism, adsorption-desorption, and gas storage (Barnett & Champness, 2003; Batten et al., 2009; Perry IV et al., 2009). Carefule choice of relevant linking ligands is one of the key factors for the successful preparation of such polymers. We have continually reported long bis(pyridine)-, bis(furan)-, bis(thiophene)-, and (pyridine–amine)-type linking ligands and their coordination polymers (Yun et al., 2009). To an extension of our ongoing study of novel linking ligands and their coordination polymers, we prepared a long, potential linking ligand containing two terminal nitro groups.

The molecular structure of the title compound with the atom-numbering scheme is shown in Fig. 1. The overall structure can be regarded as a long ether possessing two terminal nitro (NO2) groups. Two bis(pyridine)-type linking ligands containing an intervening oxydianilne fragment, which are structurally close to the title compound, were recently reported by our research group: [(3-py)—CHN—C6H4—O—C6H4—NCH—(3-py)] and [(4-py)—CHN—C6H4—O—C6H4—NCH—(4-py)] (Yun et al., 2009), which, however, were not structurally characterized. In the title compound, the dihedral angle between two aryl rings (C8–13 and C14–C19) bonded to the central oxygen (O13) is 75.72 (6)°. Terminal nitro groups are not coplanar with the phenyl rings to which they are attached, with the dihedral angle 6.4 (2) (N1, O1, O2) or 3.3 (3)° (N2, O4, O5). These bonding parameters might indicate the flexibility of the title compound. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1) and π–π interactions proved by centroid-to-centroid distances of 3.794 (3) Å.

Experimental

4-Nitrobenzaldehyde (1.12 g, 7.41 mmol) and 4,4-oxydianiline (0.67 g, 3.31 mmol) were dissolved in methanol (80 ml), to which formic acid (0.15 ml) was added. The resulting mixture was stirred at room temperature for 1 h. Dichloromethane (50 ml) was then added to the mixture, which was further stirred for 24 h. The resulting solution was filtered to give a yellow solid, which was washed with hexane (20 ml × 2). X-ray quality crystals were obtained from dichloromethane/hexane. Yield: 92%. mp: 457–459 K. IR (KBr, cm-1): 3427, 3099, 2846, 2441, 1595, 1517, 1490, 1340, 1240, 1104, 850.

Refinement

All H atoms were located on a Fourier difference map and refined isotropically.

Figures

Fig. 1.
Molecular structure of the title compound showing 50% probability displacement ellipsoids.

Crystal data

C26H18N4O5Z = 2
Mr = 466.44F(000) = 484
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3322 (11) ÅCell parameters from 23 reflections
b = 9.0716 (16) Åθ = 5.2–12.5°
c = 17.107 (2) ŵ = 0.10 mm1
α = 74.714 (9)°T = 293 K
β = 78.885 (10)°Block, yellow
γ = 64.643 (10)°0.52 × 0.32 × 0.26 mm
V = 1122.4 (3) Å3

Data collection

Siemens P4 diffractometerRint = 0.015
Radiation source: sealed tubeθmax = 25.0°, θmin = 2.5°
graphiteh = 0→9
ω scansk = −9→10
4200 measured reflectionsl = −19→20
3909 independent reflections3 standard reflections every 97 reflections
2972 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.114w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1958P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3909 reflectionsΔρmax = 0.14 e Å3
389 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0142 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.7461 (2)−1.5786 (2)0.74989 (10)0.1006 (6)
O21.8293 (3)−1.6837 (2)0.64341 (12)0.1072 (6)
O30.66294 (17)−0.41925 (15)0.27173 (8)0.0675 (4)
O40.8910 (2)0.87019 (18)−0.12942 (11)0.0838 (5)
O50.7292 (3)0.9709 (2)−0.02700 (11)0.1184 (7)
N11.7396 (2)−1.5702 (2)0.67832 (12)0.0737 (5)
N21.2107 (2)−0.96099 (19)0.43282 (10)0.0631 (4)
N30.6330 (2)0.22173 (17)0.13724 (9)0.0556 (4)
N40.7983 (2)0.86027 (19)−0.06546 (11)0.0667 (4)
C11.6151 (2)−1.4143 (2)0.63208 (11)0.0561 (4)
C21.5930 (3)−1.4084 (3)0.55334 (13)0.0697 (5)
C31.4715 (3)−1.2638 (3)0.51122 (13)0.0692 (5)
C41.3747 (2)−1.1275 (2)0.54727 (11)0.0567 (4)
C51.4043 (3)−1.1372 (3)0.62583 (12)0.0666 (5)
C61.5244 (3)−1.2814 (3)0.66859 (12)0.0646 (5)
C71.2366 (3)−0.9765 (3)0.50481 (13)0.0640 (5)
C81.0753 (2)−0.8152 (2)0.39338 (11)0.0557 (4)
C91.0170 (3)−0.8290 (2)0.32617 (11)0.0614 (5)
C100.8827 (3)−0.6950 (2)0.28467 (12)0.0603 (5)
C110.8091 (2)−0.5460 (2)0.30985 (11)0.0554 (4)
C120.8703 (3)−0.5267 (2)0.37428 (12)0.0640 (5)
C131.0025 (3)−0.6607 (2)0.41617 (13)0.0650 (5)
C140.6656 (2)−0.2624 (2)0.24132 (10)0.0527 (4)
C150.5020 (2)−0.1291 (2)0.23764 (11)0.0570 (4)
C160.4942 (2)0.0295 (2)0.20338 (11)0.0560 (4)
C170.6481 (2)0.0556 (2)0.17089 (9)0.0504 (4)
C180.8120 (2)−0.0792 (2)0.17666 (11)0.0565 (4)
C190.8211 (2)−0.2388 (2)0.21218 (11)0.0569 (4)
C200.7171 (2)0.2500 (2)0.06917 (11)0.0534 (4)
C210.7241 (2)0.4137 (2)0.03302 (10)0.0495 (4)
C220.8183 (3)0.4350 (2)−0.04281 (11)0.0580 (5)
C230.8408 (3)0.5821 (2)−0.07591 (12)0.0588 (5)
C240.7657 (2)0.70731 (19)−0.03286 (11)0.0527 (4)
C250.6657 (3)0.6929 (2)0.04074 (11)0.0606 (5)
C260.6447 (3)0.5455 (2)0.07374 (11)0.0567 (4)
H21.657 (3)−1.501 (3)0.5313 (12)0.079 (6)*
H31.454 (3)−1.258 (3)0.4561 (14)0.089 (7)*
H51.332 (3)−1.034 (3)0.6515 (13)0.089 (7)*
H61.542 (3)−1.293 (2)0.7242 (13)0.077 (6)*
H71.167 (3)−0.892 (3)0.5362 (14)0.099 (8)*
H91.073 (3)−0.939 (2)0.3098 (11)0.072 (6)*
H100.839 (3)−0.707 (2)0.2398 (12)0.077 (6)*
H120.822 (3)−0.421 (3)0.3907 (12)0.075 (6)*
H131.044 (2)−0.650 (2)0.4595 (12)0.063 (5)*
H150.397 (3)−0.151 (2)0.2596 (11)0.071 (6)*
H160.381 (3)0.125 (2)0.2019 (11)0.071 (6)*
H180.923 (3)−0.061 (2)0.1556 (11)0.063 (5)*
H190.934 (3)−0.331 (2)0.2162 (11)0.064 (5)*
H200.784 (3)0.161 (2)0.0355 (11)0.066 (5)*
H220.876 (3)0.342 (2)−0.0724 (11)0.071 (6)*
H230.904 (3)0.597 (2)−0.1244 (12)0.075 (6)*
H250.616 (3)0.777 (2)0.0689 (12)0.071 (6)*
H260.577 (3)0.528 (2)0.1242 (12)0.069 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0832 (11)0.1146 (13)0.0768 (11)−0.0193 (10)−0.0332 (9)0.0079 (9)
O20.1096 (14)0.0678 (10)0.1184 (14)−0.0056 (10)−0.0316 (11)−0.0138 (10)
O30.0578 (8)0.0524 (7)0.0882 (9)−0.0272 (6)−0.0217 (7)0.0123 (6)
O40.0881 (11)0.0700 (9)0.0968 (11)−0.0467 (8)−0.0059 (9)0.0018 (8)
O50.200 (2)0.0732 (10)0.1070 (13)−0.0782 (13)0.0012 (13)−0.0290 (10)
N10.0614 (11)0.0742 (12)0.0796 (13)−0.0268 (9)−0.0185 (9)0.0020 (10)
N20.0586 (9)0.0617 (9)0.0639 (10)−0.0236 (8)−0.0106 (8)−0.0018 (7)
N30.0617 (9)0.0480 (8)0.0558 (9)−0.0231 (7)−0.0096 (7)−0.0031 (6)
N40.0812 (12)0.0512 (9)0.0746 (11)−0.0319 (9)−0.0258 (9)−0.0009 (8)
C10.0512 (10)0.0583 (10)0.0584 (11)−0.0253 (9)−0.0112 (8)−0.0007 (8)
C20.0724 (13)0.0627 (12)0.0707 (13)−0.0205 (11)−0.0128 (10)−0.0147 (10)
C30.0763 (13)0.0713 (13)0.0579 (12)−0.0268 (11)−0.0163 (10)−0.0073 (10)
C40.0542 (10)0.0590 (10)0.0568 (10)−0.0278 (9)−0.0060 (8)−0.0018 (8)
C50.0674 (12)0.0655 (12)0.0615 (12)−0.0217 (10)−0.0082 (10)−0.0108 (9)
C60.0667 (12)0.0721 (13)0.0549 (11)−0.0286 (10)−0.0128 (9)−0.0061 (9)
C70.0611 (12)0.0633 (12)0.0619 (12)−0.0249 (10)−0.0042 (9)−0.0045 (10)
C80.0493 (10)0.0543 (10)0.0570 (10)−0.0224 (8)−0.0051 (8)0.0020 (8)
C90.0598 (11)0.0569 (11)0.0606 (11)−0.0197 (9)−0.0048 (9)−0.0074 (9)
C100.0596 (11)0.0620 (11)0.0575 (11)−0.0259 (9)−0.0091 (9)−0.0037 (9)
C110.0492 (10)0.0511 (10)0.0598 (10)−0.0242 (8)−0.0069 (8)0.0071 (8)
C120.0705 (13)0.0498 (10)0.0674 (12)−0.0228 (9)−0.0100 (10)−0.0047 (9)
C130.0733 (13)0.0614 (12)0.0618 (12)−0.0294 (10)−0.0179 (10)−0.0022 (9)
C140.0561 (10)0.0483 (9)0.0528 (10)−0.0247 (8)−0.0109 (8)0.0019 (7)
C150.0475 (10)0.0582 (11)0.0636 (11)−0.0237 (9)−0.0086 (8)−0.0025 (8)
C160.0490 (10)0.0518 (10)0.0607 (11)−0.0156 (8)−0.0112 (8)−0.0043 (8)
C170.0575 (10)0.0481 (9)0.0454 (9)−0.0227 (8)−0.0089 (8)−0.0033 (7)
C180.0519 (10)0.0543 (10)0.0615 (11)−0.0248 (9)−0.0053 (8)−0.0024 (8)
C190.0484 (10)0.0509 (10)0.0634 (11)−0.0176 (8)−0.0083 (8)−0.0003 (8)
C200.0603 (11)0.0473 (9)0.0549 (10)−0.0230 (8)−0.0103 (8)−0.0080 (8)
C210.0536 (10)0.0456 (9)0.0499 (9)−0.0201 (8)−0.0122 (7)−0.0048 (7)
C220.0698 (12)0.0462 (10)0.0567 (11)−0.0224 (9)−0.0026 (9)−0.0119 (8)
C230.0635 (11)0.0524 (10)0.0573 (11)−0.0245 (9)−0.0026 (9)−0.0057 (8)
C240.0592 (10)0.0431 (9)0.0589 (10)−0.0221 (8)−0.0202 (8)−0.0018 (7)
C250.0757 (13)0.0463 (10)0.0595 (11)−0.0190 (9)−0.0140 (10)−0.0137 (8)
C260.0651 (11)0.0524 (10)0.0507 (10)−0.0219 (9)−0.0066 (9)−0.0091 (8)

Geometric parameters (Å, °)

O1—N11.217 (2)C10—C111.373 (3)
O2—N11.211 (2)C10—H100.96 (2)
O3—C141.388 (2)C11—C121.379 (3)
O3—C111.394 (2)C12—C131.379 (3)
O4—N41.218 (2)C12—H120.97 (2)
O5—N41.216 (2)C13—H130.920 (19)
N1—C11.474 (2)C14—C191.380 (2)
N2—C71.252 (3)C14—C151.381 (2)
N2—C81.422 (2)C15—C161.381 (2)
N3—C201.262 (2)C15—H150.97 (2)
N3—C171.424 (2)C16—C171.387 (2)
N4—C241.472 (2)C16—H160.97 (2)
C1—C61.360 (3)C17—C181.389 (2)
C1—C21.378 (3)C18—C191.389 (2)
C2—C31.382 (3)C18—H180.990 (19)
C2—H20.92 (2)C19—H190.956 (19)
C3—C41.384 (3)C20—C211.472 (2)
C3—H30.97 (2)C20—H201.016 (19)
C4—C51.386 (3)C21—C261.392 (2)
C4—C71.475 (3)C21—C221.393 (2)
C5—C61.380 (3)C22—C231.383 (3)
C5—H51.03 (2)C22—H220.99 (2)
C6—H60.96 (2)C23—C241.371 (3)
C7—H70.96 (2)C23—H230.90 (2)
C8—C91.385 (3)C24—C251.378 (3)
C8—C131.397 (3)C25—C261.378 (3)
C9—C101.386 (3)C25—H250.92 (2)
C9—H90.99 (2)C26—H260.953 (19)
C14—O3—C11118.85 (13)C13—C12—H12119.3 (12)
O2—N1—O1123.39 (19)C12—C13—C8120.5 (2)
O2—N1—C1118.48 (19)C12—C13—H13120.5 (12)
O1—N1—C1118.1 (2)C8—C13—H13119.0 (12)
C7—N2—C8120.80 (18)C19—C14—C15120.83 (16)
C20—N3—C17118.44 (15)C19—C14—O3122.74 (16)
O5—N4—O4123.56 (17)C15—C14—O3116.35 (15)
O5—N4—C24117.74 (18)C14—C15—C16119.40 (17)
O4—N4—C24118.69 (16)C14—C15—H15118.0 (11)
C6—C1—C2122.07 (18)C16—C15—H15122.6 (11)
C6—C1—N1119.08 (18)C15—C16—C17120.79 (17)
C2—C1—N1118.85 (19)C15—C16—H16120.6 (12)
C1—C2—C3118.6 (2)C17—C16—H16118.6 (12)
C1—C2—H2119.0 (13)C16—C17—C18119.11 (15)
C3—C2—H2122.4 (13)C16—C17—N3118.57 (15)
C2—C3—C4120.64 (19)C18—C17—N3122.20 (16)
C2—C3—H3119.7 (13)C17—C18—C19120.35 (17)
C4—C3—H3119.6 (13)C17—C18—H18119.4 (10)
C3—C4—C5118.88 (18)C19—C18—H18120.2 (10)
C3—C4—C7121.08 (18)C14—C19—C18119.44 (17)
C5—C4—C7119.99 (19)C14—C19—H19120.4 (11)
C6—C5—C4120.9 (2)C18—C19—H19120.2 (11)
C6—C5—H5121.3 (12)N3—C20—C21122.54 (17)
C4—C5—H5117.8 (12)N3—C20—H20122.0 (10)
C1—C6—C5118.84 (19)C21—C20—H20115.4 (10)
C1—C6—H6118.9 (12)C26—C21—C22119.25 (16)
C5—C6—H6122.2 (12)C26—C21—C20121.80 (16)
N2—C7—C4121.7 (2)C22—C21—C20118.91 (16)
N2—C7—H7122.5 (14)C23—C22—C21120.78 (17)
C4—C7—H7115.8 (14)C23—C22—H22119.2 (11)
C9—C8—C13118.62 (17)C21—C22—H22120.0 (11)
C9—C8—N2116.51 (17)C24—C23—C22118.32 (18)
C13—C8—N2124.84 (17)C24—C23—H23119.8 (13)
C8—C9—C10120.91 (19)C22—C23—H23121.9 (13)
C8—C9—H9117.4 (11)C23—C24—C25122.38 (16)
C10—C9—H9121.7 (11)C23—C24—N4118.52 (17)
C11—C10—C9119.33 (19)C25—C24—N4119.07 (16)
C11—C10—H10120.1 (12)C24—C25—C26119.05 (17)
C9—C10—H10120.6 (12)C24—C25—H25121.6 (12)
C10—C11—C12120.95 (17)C26—C25—H25119.3 (12)
C10—C11—O3117.62 (17)C25—C26—C21120.13 (18)
C12—C11—O3121.29 (17)C25—C26—H26123.1 (12)
C11—C12—C13119.60 (19)C21—C26—H26116.8 (12)
C11—C12—H12121.1 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.956 (19)2.57 (2)3.375 (2)142.4 (14)
C20—H20···O5ii1.016 (19)2.48 (2)3.323 (2)139.7 (14)

Symmetry codes: (i) −x+3, −y−2, −z+1; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2603).

References

  • Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev.246, 145–168.
  • Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.
  • Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev.38, 1400–1417. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yun, H. J., Lim, S. H. & Lee, S. W. (2009). Polyhedron, 28, 614–620.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography