PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2172.
Published online 2009 August 15. doi:  10.1107/S1600536809032139
PMCID: PMC2969889

2,2,2-Tribromo-N-(4-chloro­phen­yl)acetamide

Abstract

The crystal structure of the title compound, C8H5Br3ClNO, shows both intra­molecular N—H(...)Br and inter­molecular N—H(...)O hydrogen bonding. In the crystal, the mol­ecules are packed into column-like chains in the c-axis direction via the N—H(...)O hydrogen bonds.

Related literature

For the preparation of the compound, see: Gowda et al. (2003 [triangle]). For our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides, see: Gowda et al. (2000 [triangle], 2007 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2172-scheme1.jpg

Experimental

Crystal data

  • C8H5Br3ClNO
  • M r = 406.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2172-efi1.jpg
  • a = 9.7332 (8) Å
  • b = 10.2462 (9) Å
  • c = 23.898 (2) Å
  • V = 2383.3 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 10.35 mm−1
  • T = 299 K
  • 0.40 × 0.16 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.104, T max = 0.355
  • 5692 measured reflections
  • 2353 independent reflections
  • 1643 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080
  • wR(F 2) = 0.205
  • S = 1.04
  • 2353 reflections
  • 130 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.04 e Å−3
  • Δρmin = −0.95 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032139/pk2183sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032139/pk2183Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of the ring and side chain substituents on the solid state structures of N-aromatic amides (Gowda et al., 2000, 2007, 2009), the structure of 2,2,2-tribromo-N-(4-chlorophenyl)acetamide has been determined (Fig.1). The conformation of the N—H bond is anti to the C=O bond in the side chain, similar to that observed in N-(4-chlorophenyl)acetamide (Gowda et al., 2007), 2,2,2-trichloro-N-(4-chlorophenyl)acetamide (Gowda et al., 2003), and other amides (Gowda et al., 2009). The structure shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. The packing diagram of molecules showing the hydrogen bonds N1—H1N···O1 (Table 1) involved in the formation of molecular chains in the direction of the c-axis is given in Fig. 2.

Experimental

The title compound was prepared from 4-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (5) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The largest residual electron-density features are located in the region of Br3 and Br2. The highest peak is 0.98 Å from Br3 and the deepest hole is 0.50 Å from Br2.

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C8H5Br3ClNOF(000) = 1520
Mr = 406.31Dx = 2.265 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2849 reflections
a = 9.7332 (8) Åθ = 2.6–27.8°
b = 10.2462 (9) ŵ = 10.35 mm1
c = 23.898 (2) ÅT = 299 K
V = 2383.3 (3) Å3Long needle, colourless
Z = 80.40 × 0.16 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2353 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
graphiteRint = 0.033
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −12→8
Tmin = 0.104, Tmax = 0.355k = −12→9
5692 measured reflectionsl = −29→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0891P)2 + 22.8289P] where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.005
130 parametersΔρmax = 2.04 e Å3
1 restraintΔρmin = −0.95 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4391 (10)0.4634 (8)0.1037 (4)0.038 (2)
C20.4633 (11)0.3604 (9)0.0673 (5)0.048 (2)
H20.39900.29390.06330.058*
C30.5841 (10)0.3580 (10)0.0369 (5)0.051 (3)
H30.60170.28850.01290.062*
C40.6786 (10)0.4569 (10)0.0418 (4)0.051 (3)
C50.6549 (10)0.5578 (10)0.0790 (5)0.053 (3)
H50.71960.62400.08290.064*
C60.5357 (11)0.5609 (9)0.1103 (4)0.048 (2)
H60.52060.62820.13570.058*
C70.2449 (10)0.5644 (8)0.1518 (4)0.039 (2)
C80.1178 (10)0.5312 (8)0.1876 (4)0.043 (2)
N10.3172 (8)0.4601 (6)0.1361 (3)0.0425 (19)
H1N0.283 (10)0.386 (6)0.140 (4)0.051*
O10.2715 (7)0.6760 (5)0.1408 (3)0.0521 (18)
Cl10.8276 (3)0.4561 (4)0.00254 (14)0.0775 (10)
Br1−0.00883 (11)0.42751 (13)0.14426 (6)0.0737 (5)
Br20.02425 (15)0.68618 (11)0.21207 (7)0.0817 (5)
Br30.17735 (16)0.43813 (13)0.25385 (5)0.0792 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.053 (5)0.028 (4)0.033 (5)0.007 (4)0.005 (4)0.006 (4)
C20.054 (6)0.036 (5)0.054 (6)0.003 (4)0.005 (5)−0.001 (5)
C30.047 (6)0.053 (6)0.054 (6)0.017 (5)0.009 (5)−0.006 (5)
C40.040 (5)0.073 (7)0.040 (5)0.011 (5)0.004 (4)0.004 (5)
C50.040 (5)0.050 (6)0.070 (7)−0.004 (4)0.008 (5)−0.006 (5)
C60.055 (6)0.042 (5)0.046 (6)0.001 (5)0.000 (5)−0.014 (5)
C70.042 (4)0.035 (5)0.040 (5)−0.001 (4)0.009 (4)0.007 (4)
C80.053 (5)0.023 (4)0.052 (6)0.002 (4)0.011 (5)−0.005 (4)
N10.051 (5)0.025 (4)0.052 (5)0.002 (3)0.013 (4)0.007 (3)
O10.056 (4)0.024 (3)0.077 (5)0.003 (3)0.022 (4)0.003 (3)
Cl10.0468 (15)0.117 (3)0.069 (2)0.0073 (16)0.0172 (14)−0.0168 (19)
Br10.0450 (6)0.0856 (9)0.0904 (10)−0.0022 (6)−0.0020 (6)−0.0336 (8)
Br20.0900 (9)0.0439 (6)0.1112 (12)0.0043 (6)0.0532 (8)−0.0141 (7)
Br30.0860 (9)0.0990 (10)0.0527 (7)−0.0108 (7)0.0088 (7)0.0255 (7)

Geometric parameters (Å, °)

C1—C61.380 (13)C5—H50.9300
C1—C21.389 (13)C6—H60.9300
C1—N11.416 (12)C7—O11.202 (10)
C2—C31.382 (14)C7—N11.334 (11)
C2—H20.9300C7—C81.542 (13)
C3—C41.374 (14)C8—Br21.921 (8)
C3—H30.9300C8—Br11.929 (10)
C4—C51.383 (14)C8—Br31.937 (10)
C4—Cl11.727 (10)N1—H1N0.84 (5)
C5—C61.382 (14)
C6—C1—C2120.4 (9)C1—C6—C5119.5 (9)
C6—C1—N1121.7 (8)C1—C6—H6120.2
C2—C1—N1117.8 (8)C5—C6—H6120.2
C3—C2—C1119.2 (9)O1—C7—N1126.0 (8)
C3—C2—H2120.4O1—C7—C8120.2 (8)
C1—C2—H2120.4N1—C7—C8113.8 (7)
C4—C3—C2120.8 (9)C7—C8—Br2111.5 (6)
C4—C3—H3119.6C7—C8—Br1109.6 (6)
C2—C3—H3119.6Br2—C8—Br1108.4 (5)
C3—C4—C5119.6 (9)C7—C8—Br3108.8 (7)
C3—C4—Cl1120.8 (8)Br2—C8—Br3107.4 (5)
C5—C4—Cl1119.5 (8)Br1—C8—Br3111.0 (4)
C6—C5—C4120.4 (9)C7—N1—C1125.2 (7)
C6—C5—H5119.8C7—N1—H1N119 (7)
C4—C5—H5119.8C1—N1—H1N115 (7)
C6—C1—C2—C3−1.2 (15)O1—C7—C8—Br2−2.7 (12)
N1—C1—C2—C3−177.3 (9)N1—C7—C8—Br2176.9 (7)
C1—C2—C3—C4−1.1 (15)O1—C7—C8—Br1117.4 (9)
C2—C3—C4—C52.3 (16)N1—C7—C8—Br1−63.0 (10)
C2—C3—C4—Cl1−178.3 (8)O1—C7—C8—Br3−121.0 (9)
C3—C4—C5—C6−1.3 (16)N1—C7—C8—Br358.6 (9)
Cl1—C4—C5—C6179.3 (8)O1—C7—N1—C10.5 (16)
C2—C1—C6—C52.2 (15)C8—C7—N1—C1−179.1 (9)
N1—C1—C6—C5178.1 (9)C6—C1—N1—C736.9 (14)
C4—C5—C6—C1−1.0 (16)C2—C1—N1—C7−147.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.84 (5)2.87 (10)3.197 (8)105 (8)
N1—H1N···O1i0.84 (5)2.21 (5)3.038 (9)168 (10)

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2183).

References

  • Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  • Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3392.
  • Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography