PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1082.
Published online 2009 August 19. doi:  10.1107/S1600536809031821
PMCID: PMC2969884

catena-Poly[[bis­(3-carb­oxy-5-nitro­benzoato-κO 1)copper(II)]-μ-1,3-di-4-pyridylpropane-κ2 N:N′]

Abstract

In the title compound, [Cu(C8H4NO6)2(C13H14N2)]n, the square-planar coordinated CuII ion lies on an inversion centre and is coordinated by two protonated 5-nitro­isophthalate ligands. The CuII ions are linked into a one-dimensional coordination polymer by tethering 1,3-di-4-pyridylpropane ligands, whose central methyl­ene C atoms are situated on twofold rotation axes. The chains are oriented parallel to the c axis, and stack into a supra­molecular three-dimensional structure through O—H(...)O hydrogen-bonding inter­actions.

Related literature

For some recent divalent copper dicarboxyl­ate coordination polymers containing 1,3-di-4-pyridylpropane, see: Wang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1082-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H4NO6)2(C13H14N2)]
  • M r = 682.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1082-efi2.jpg
  • a = 25.2976 (8) Å
  • b = 5.3702 (2) Å
  • c = 21.3122 (7) Å
  • β = 115.865 (2)°
  • V = 2605.29 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 173 K
  • 0.22 × 0.22 × 0.11 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.821, T max = 0.905
  • 10349 measured reflections
  • 2401 independent reflections
  • 2087 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.112
  • S = 1.08
  • 2401 reflections
  • 213 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.10 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031821/tk2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031821/tk2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

The title compound, (I), was prepared by the hydrothermal reaction of copper nitrate, 5-nitroisophthalic acid (nip) and 1,3-di-4-pyridylpropame (dpp). Its asymmetric unit contains a copper atom on an inversion centre, one singly protonated nip (Hnip) ligand, and one-half of a dpp ligand, whose central methylene carbon atom is situated on a 2-fold axis. Operation of the inversion centre at Cu reveals a square planar coordination environment with trans O atom donors from protonated nip ligands and trans N donors from two dpp ligands (Fig. 1). The Hnip ligands are bound to Cu in a simple monodentate fashion via an O atom belonging to the non-protonated carboxylate terminus.

Operation of the 2-fold rotation axes indicates that dpp ligands connect neighboring Cu atoms into a one-dimensional [Cu(Hnip)2(dpp)]n coordination polymer chain (Fig. 2), which is oriented parallel to the c-axis. The methylene groups within the dpp ligands adopt a gauche-gauche conformation, providing a Cu···Cu separation of 10.656 (4) Å. Neighboring chains aggregate by hydrogen-bonding mechanisms (Table 1) involving the hydroxyl groups of the protonated Hnip ligands and unligated O atoms of the monodentate Hnip carboxylate groups, thus forming the three-dimensional supramolecular structure (Fig. 3).

Experimental

All starting materials were obtained commercially. A mixture of copper nitrate trihydrate (90 mg, 0.37 mmol), 5-nitroisophthalic acid (79 mg, 0.37 mmol), 1,3-di-4-pyridylpropane (73 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 363 K for 24 h. Blue blocks of (I) were obtained along with a light-blue amorphous powder.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom bound to the protonated carboxylate O atom was found in a difference Fourier map, restrained with O—H = 0.89 Å, and refined with Uiso = 1.2Ueq(O).

The maximum and minimum residual electron density peaks of 1.10 and -0.31 e Å-3, respectively, were located 1.08 Å and 0.68 Å from the C14 and C17 atoms, respectively.

Figures

Fig. 1.
The coordination environment of (I), showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, light blue N, orange O, black C. Symmetry codes: (i) -x, -y, -z (ii) -x, y, ...
Fig. 2.
A view of the coordination polymer chain motif in (I).
Fig. 3.
Stacking diagram for (I), viewed down the b axis. Hydrogen bonding contacts are indicated as dashed bars.

Crystal data

[Cu(C8H4NO6)2(C13H14N2)]F(000) = 1396
Mr = 682.05Dx = 1.739 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10349 reflections
a = 25.2976 (8) Åθ = 1.8–25.4°
b = 5.3702 (2) ŵ = 0.92 mm1
c = 21.3122 (7) ÅT = 173 K
β = 115.865 (2)°Block, blue
V = 2605.29 (15) Å30.22 × 0.22 × 0.11 mm
Z = 4

Data collection

Bruker APEXII diffractometer2401 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
graphiteRint = 0.032
ω and [var phi] scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −30→28
Tmin = 0.821, Tmax = 0.905k = −6→6
10349 measured reflectionsl = −24→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0535P)2 + 8.8582P] where P = (Fo2 + 2Fc2)/3
2401 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 1.10 e Å3
1 restraintΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.01865 (18)
O10.07835 (8)−0.1413 (4)0.04676 (10)0.0209 (5)
O20.11395 (9)0.1584 (4)0.00388 (11)0.0273 (5)
O30.31946 (10)0.1103 (5)0.04659 (13)0.0332 (6)
H3A0.3473 (12)0.154 (7)0.0365 (19)0.040*
O40.37815 (10)−0.2063 (5)0.10363 (13)0.0374 (6)
O50.30010 (10)−0.7828 (4)0.22279 (12)0.0325 (6)
O60.20769 (10)−0.7829 (4)0.19827 (11)0.0279 (5)
N10.01902 (10)0.2420 (5)0.07966 (12)0.0207 (5)
N20.25020 (11)−0.6974 (5)0.19249 (12)0.0222 (6)
C10.17873 (12)−0.1639 (6)0.07286 (14)0.0180 (6)
C20.22615 (12)−0.0740 (6)0.06286 (14)0.0178 (6)
H20.22130.06940.03480.021*
C30.28055 (12)−0.1922 (6)0.09360 (14)0.0189 (6)
C40.28838 (12)−0.3992 (6)0.13549 (14)0.0187 (6)
H40.3252−0.48230.15620.022*
C50.24125 (13)−0.4817 (5)0.14633 (14)0.0187 (6)
C60.18627 (12)−0.3712 (6)0.11546 (14)0.0178 (6)
H60.1545−0.43490.12310.021*
C70.11985 (12)−0.0359 (6)0.03800 (14)0.0190 (6)
C80.33175 (12)−0.0985 (6)0.08267 (15)0.0230 (7)
C110.06442 (14)0.2091 (7)0.14297 (17)0.0299 (7)
H110.08970.07090.14920.036*
C120.07641 (14)0.3641 (7)0.19921 (16)0.0300 (8)
H120.10880.33050.24280.036*
C130.04037 (13)0.5719 (6)0.19170 (16)0.0255 (7)
C14−0.00464 (13)0.6150 (6)0.12500 (16)0.0270 (7)
H14−0.02900.75790.11640.032*
C15−0.01359 (13)0.4504 (6)0.07206 (16)0.0265 (7)
H15−0.04450.48440.02740.032*
C160.05196 (14)0.7391 (7)0.25328 (16)0.0297 (7)
H16A0.08410.85490.25860.036*
H16B0.06620.63440.29570.036*
C170.00000.8934 (9)0.25000.0293 (10)
H17A−0.01371.00230.20840.035*0.50
H17B0.01371.00230.29160.035*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0127 (3)0.0208 (3)0.0223 (3)0.0016 (2)0.0075 (2)−0.0009 (2)
O10.0152 (9)0.0220 (12)0.0241 (10)0.0019 (9)0.0072 (8)0.0005 (9)
O20.0225 (10)0.0269 (13)0.0338 (12)0.0092 (10)0.0135 (9)0.0115 (10)
O30.0267 (12)0.0337 (14)0.0471 (14)0.0025 (11)0.0235 (11)0.0139 (12)
O40.0198 (11)0.0438 (15)0.0491 (14)0.0036 (11)0.0153 (10)0.0089 (12)
O50.0296 (12)0.0306 (14)0.0346 (12)0.0131 (10)0.0116 (10)0.0145 (11)
O60.0330 (12)0.0236 (12)0.0294 (11)−0.0015 (10)0.0158 (10)0.0040 (10)
N10.0171 (12)0.0233 (14)0.0213 (12)0.0037 (11)0.0079 (10)0.0006 (11)
N20.0278 (14)0.0191 (14)0.0196 (12)0.0036 (11)0.0103 (11)0.0000 (10)
C10.0160 (13)0.0193 (15)0.0174 (13)0.0025 (12)0.0061 (11)−0.0026 (12)
C20.0197 (14)0.0177 (15)0.0157 (13)0.0016 (12)0.0075 (11)0.0016 (11)
C30.0177 (14)0.0212 (16)0.0172 (13)0.0008 (12)0.0071 (11)−0.0022 (12)
C40.0152 (13)0.0203 (15)0.0173 (13)0.0032 (12)0.0039 (11)−0.0017 (12)
C50.0223 (14)0.0176 (15)0.0139 (13)0.0015 (12)0.0059 (11)0.0002 (12)
C60.0161 (13)0.0194 (16)0.0173 (13)−0.0022 (12)0.0066 (11)−0.0038 (12)
C70.0169 (14)0.0216 (17)0.0158 (13)0.0018 (12)0.0046 (11)−0.0030 (12)
C80.0175 (14)0.0279 (17)0.0222 (15)−0.0001 (13)0.0072 (12)−0.0001 (13)
C110.0274 (16)0.0300 (19)0.0332 (17)0.0041 (14)0.0142 (14)0.0028 (15)
C120.0304 (17)0.032 (2)0.0257 (16)−0.0019 (15)0.0105 (13)0.0022 (14)
C130.0227 (15)0.0277 (18)0.0283 (16)−0.0034 (13)0.0129 (13)0.0012 (14)
C140.0239 (15)0.0255 (18)0.0327 (17)−0.0002 (14)0.0133 (13)0.0007 (14)
C150.0217 (15)0.0339 (19)0.0236 (15)0.0000 (14)0.0098 (13)0.0031 (14)
C160.0268 (17)0.034 (2)0.0261 (16)−0.0030 (15)0.0092 (13)−0.0004 (14)
C170.033 (2)0.030 (3)0.025 (2)0.0000.0131 (19)0.000

Geometric parameters (Å, °)

Cu1—O11.9427 (19)C3—C81.500 (4)
Cu1—O1i1.9427 (19)C4—C51.383 (4)
Cu1—N1i2.022 (2)C4—H40.9500
Cu1—N12.022 (2)C5—C61.386 (4)
O1—C71.276 (3)C6—H60.9500
O2—C71.243 (4)C11—C121.380 (5)
O3—C81.318 (4)C11—H110.9500
O3—H3A0.85 (4)C12—C131.405 (5)
O4—C81.206 (4)C12—H120.9500
O5—N21.229 (3)C13—C141.399 (4)
O6—N21.224 (3)C13—C161.510 (5)
N1—C111.349 (4)C14—C151.372 (5)
N1—C151.358 (4)C14—H140.9500
N2—C51.472 (4)C15—H150.9500
C1—C21.393 (4)C16—C171.529 (4)
C1—C61.396 (4)C16—H16A0.9900
C1—C71.509 (4)C16—H16B0.9900
C2—C31.392 (4)C17—C16ii1.530 (4)
C2—H20.9500C17—H17A0.9900
C3—C41.385 (4)C17—H17B0.9900
O1—Cu1—O1i180.00 (11)O2—C7—C1120.7 (3)
O1—Cu1—N1i89.75 (9)O1—C7—C1115.1 (3)
O1i—Cu1—N1i90.25 (9)O4—C8—O3124.6 (3)
O1—Cu1—N190.25 (9)O4—C8—C3123.3 (3)
O1i—Cu1—N189.75 (9)O3—C8—C3112.1 (2)
N1i—Cu1—N1180.0N1—C11—C12124.0 (3)
C7—O1—Cu1118.18 (18)N1—C11—H11118.0
C8—O3—H3A112 (3)C12—C11—H11118.0
C11—N1—C15115.8 (3)C11—C12—C13119.6 (3)
C11—N1—Cu1122.9 (2)C11—C12—H12120.2
C15—N1—Cu1121.3 (2)C13—C12—H12120.2
O6—N2—O5123.6 (3)C14—C13—C12116.5 (3)
O6—N2—C5118.5 (2)C14—C13—C16123.2 (3)
O5—N2—C5117.9 (2)C12—C13—C16120.2 (3)
C2—C1—C6119.6 (3)C15—C14—C13119.9 (3)
C2—C1—C7119.9 (3)C15—C14—H14120.1
C6—C1—C7120.6 (2)C13—C14—H14120.1
C3—C2—C1120.7 (3)N1—C15—C14124.0 (3)
C3—C2—H2119.7N1—C15—H15118.0
C1—C2—H2119.7C14—C15—H15118.0
C4—C3—C2120.2 (3)C13—C16—C17116.5 (2)
C4—C3—C8118.6 (3)C13—C16—H16A108.2
C2—C3—C8121.2 (3)C17—C16—H16A108.2
C5—C4—C3118.3 (3)C13—C16—H16B108.2
C5—C4—H4120.9C17—C16—H16B108.2
C3—C4—H4120.9H16A—C16—H16B107.3
C4—C5—C6122.9 (3)C16—C17—C16ii114.4 (4)
C4—C5—N2118.1 (3)C16—C17—H17A108.7
C6—C5—N2118.9 (3)C16ii—C17—H17A108.7
C5—C6—C1118.3 (3)C16—C17—H17B108.7
C5—C6—H6120.9C16ii—C17—H17B108.7
C1—C6—H6120.9H17A—C17—H17B107.6
O2—C7—O1124.2 (3)
N1i—Cu1—O1—C794.8 (2)Cu1—O1—C7—C1−176.93 (17)
N1—Cu1—O1—C7−85.2 (2)C2—C1—C7—O2−4.5 (4)
O1—Cu1—N1—C11−17.8 (2)C6—C1—C7—O2175.1 (3)
O1i—Cu1—N1—C11162.2 (2)C2—C1—C7—O1175.8 (2)
O1—Cu1—N1—C15161.9 (2)C6—C1—C7—O1−4.6 (4)
O1i—Cu1—N1—C15−18.1 (2)C4—C3—C8—O46.5 (5)
C6—C1—C2—C31.5 (4)C2—C3—C8—O4−173.9 (3)
C7—C1—C2—C3−178.9 (3)C4—C3—C8—O3−174.8 (3)
C1—C2—C3—C4−1.0 (4)C2—C3—C8—O34.8 (4)
C1—C2—C3—C8179.4 (3)C15—N1—C11—C124.0 (5)
C2—C3—C4—C5−0.8 (4)Cu1—N1—C11—C12−176.3 (2)
C8—C3—C4—C5178.9 (3)N1—C11—C12—C13−0.7 (5)
C3—C4—C5—C62.1 (4)C11—C12—C13—C14−3.1 (5)
C3—C4—C5—N2−178.3 (2)C11—C12—C13—C16178.3 (3)
O6—N2—C5—C4−174.7 (3)C12—C13—C14—C153.4 (5)
O5—N2—C5—C44.8 (4)C16—C13—C14—C15−178.0 (3)
O6—N2—C5—C65.0 (4)C11—N1—C15—C14−3.6 (4)
O5—N2—C5—C6−175.5 (3)Cu1—N1—C15—C14176.7 (2)
C4—C5—C6—C1−1.5 (4)C13—C14—C15—N1−0.1 (5)
N2—C5—C6—C1178.8 (2)C14—C13—C16—C1724.3 (5)
C2—C1—C6—C5−0.3 (4)C12—C13—C16—C17−157.2 (3)
C7—C1—C6—C5−179.9 (2)C13—C16—C17—C16ii62.0 (2)
Cu1—O1—C7—O23.4 (4)

Symmetry codes: (i) −x, −y, −z; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O2iii0.85 (4)1.86 (2)2.668 (3)158 (4)

Symmetry codes: (iii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2526).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software, Bicester, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G. R., Li, Z. G., Jia, H. Q., Hu, N. H. & Xu, J. W. (2009). CrystEngComm, 11, 292–297. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography