PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2165.
Published online 2009 August 15. doi:  10.1107/S1600536809031912
PMCID: PMC2969880

2-(1H-Benzotriazol-1-yl)-1-(4-ethyl­benzo­yl)ethyl 2-chloro­benzoate

Abstract

In the crystal structure of the title compound, C24H20ClN3O3, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into chains extended along the a axis. The crystal studied was found to be an inversion twin.

Related literature

For background to the pharmacological activity of 1H-benzotriazole and its derivative, see Chen & Wu (2005 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2165-scheme1.jpg

Experimental

Crystal data

  • C24H20ClN3O3
  • M r = 433.88
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2165-efi1.jpg
  • a = 9.433 (2) Å
  • b = 14.824 (4) Å
  • c = 15.239 (4) Å
  • V = 2131.0 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 293 K
  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 13991 measured reflections
  • 5212 independent reflections
  • 2174 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.158
  • S = 0.91
  • 5212 reflections
  • 281 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2244 Friedel pairs
  • Flack parameter: 0.57 (12)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031912/hb5022sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031912/hb5022Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1H-Benzotriazole and its derivatives exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with higher bioactivity.

All the bond lengths and angles in (I) are within their normal ranges (Allen et al., 1987). The benzotriazole ring system is essentially planar, with a dihedral angle of 1.97 (1)° between the triazole ring (atoms N1—N3/C1/C6) and the C1—C6 benzene ring. The dihedral angles between the mean planes of the benzotriazole system and the C10—C15 and C19—C24 aromatic rings are 9.25 (1)° and 87.55 (1)°, respectively. The dihedral angle between rings C10—C15 and C19—C24 is 85.25 (2)°. Molecule (I) is chiral: atom C8 has S configuration, but refinement showed the crystal to be a racemic twin.

Experimental

Bromine (3.2 g, 0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-ethylphenyl)propan-1-one (5.58 g, 0.02 mol) and sodium acetate (1.6 g, 0.02 mol) in acetic acid (50 ml). The reaction proceeded for 7 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of 2-chlorobenzoic acid (3.1 g, 0.02 mol) and triethylamine (2.8 ml) was added. The mixture was stirred with ice-water for 6 h. The solution was then filtered and concentrated. Colourless blocks of (I) were obtained by slow evaporation of an petroleum aether-ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids (arbitrary spheres for the H atoms).

Crystal data

C24H20ClN3O3F(000) = 904
Mr = 433.88Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5212 reflections
a = 9.433 (2) Åθ = 1.9–28.3°
b = 14.824 (4) ŵ = 0.21 mm1
c = 15.239 (4) ÅT = 293 K
V = 2131.0 (10) Å3Block, colourless
Z = 40.15 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer2174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
graphiteθmax = 28.3°, θmin = 1.9°
ω scansh = −12→12
13991 measured reflectionsk = −19→17
5212 independent reflectionsl = −20→13

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057w = 1/[σ2(Fo2) + (0.0626P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.158(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.22 e Å3
5212 reflectionsΔρmin = −0.20 e Å3
281 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2214 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.57 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.15025 (14)0.62148 (8)0.24883 (9)0.0933 (5)
O1−0.1687 (2)0.61438 (14)0.03013 (16)0.0470 (6)
O2−0.3655 (3)0.73734 (15)0.08575 (17)0.0573 (7)
O3−0.0410 (3)0.69848 (17)0.12131 (18)0.0572 (7)
N1−0.2042 (3)0.6104 (2)−0.15765 (19)0.0497 (8)
N2−0.1122 (4)0.6446 (2)−0.2173 (2)0.0660 (10)
N3−0.0555 (4)0.5770 (3)−0.2603 (2)0.0788 (11)
C1−0.1124 (5)0.4984 (3)−0.2287 (3)0.0627 (12)
C2−0.0891 (5)0.4096 (3)−0.2526 (3)0.0803 (14)
H2B−0.02340.3952−0.29580.096*
C3−0.1639 (7)0.3446 (3)−0.2116 (3)0.0887 (17)
H3B−0.14970.2846−0.22700.106*
C4−0.2615 (6)0.3655 (3)−0.1468 (3)0.0806 (14)
H4A−0.31240.3190−0.12060.097*
C5−0.2858 (5)0.4534 (3)−0.1199 (3)0.0669 (12)
H5A−0.35070.4675−0.07600.080*
C6−0.2070 (4)0.5187 (3)−0.1626 (3)0.0502 (10)
C7−0.2789 (4)0.6705 (2)−0.0990 (2)0.0508 (10)
H7A−0.36580.6415−0.07990.061*
H7B−0.30470.7248−0.13080.061*
C8−0.1931 (4)0.6963 (2)−0.0194 (2)0.0430 (9)
H8A−0.10220.7221−0.03790.052*
C9−0.2747 (4)0.7649 (2)0.0346 (3)0.0433 (9)
C10−0.2528 (4)0.8626 (2)0.0197 (2)0.0433 (9)
C11−0.1516 (5)0.8960 (3)−0.0356 (3)0.0705 (13)
H11A−0.09110.8566−0.06490.085*
C12−0.1383 (5)0.9887 (3)−0.0485 (3)0.0804 (15)
H12A−0.06831.0103−0.08600.097*
C13−0.2257 (5)1.0486 (2)−0.0072 (3)0.0656 (12)
C14−0.3253 (5)1.0147 (3)0.0490 (3)0.0650 (13)
H14A−0.38491.05420.07890.078*
C15−0.3386 (4)0.9232 (2)0.0622 (3)0.0545 (10)
H15A−0.40730.90200.10090.065*
C16−0.2116 (6)1.1492 (3)−0.0229 (4)0.0990 (18)
H16A−0.25171.1628−0.08000.119*
H16B−0.26871.18030.02050.119*
C17−0.0676 (6)1.1865 (3)−0.0198 (4)0.109 (2)
H17A−0.07091.2501−0.03110.164*
H17B−0.00991.1575−0.06340.164*
H17C−0.02761.17610.03730.164*
C18−0.0826 (4)0.6257 (2)0.1005 (2)0.0443 (9)
C19−0.0495 (4)0.5386 (2)0.1438 (2)0.0459 (10)
C20−0.1196 (5)0.4611 (2)0.1187 (3)0.0602 (11)
H20A−0.18790.46450.07480.072*
C21−0.0906 (6)0.3783 (3)0.1573 (3)0.0742 (14)
H21A−0.13990.32700.13970.089*
C220.0106 (6)0.3724 (3)0.2212 (3)0.0772 (14)
H22A0.03060.31700.24710.093*
C230.0820 (5)0.4473 (3)0.2466 (3)0.0840 (15)
H23A0.15170.44280.28950.101*
C240.0519 (5)0.5315 (3)0.2090 (3)0.0589 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1010 (9)0.0888 (9)0.0902 (9)−0.0149 (8)−0.0451 (8)0.0174 (8)
O10.0570 (15)0.0334 (13)0.0505 (15)0.0011 (12)−0.0078 (13)0.0052 (12)
O20.0568 (17)0.0499 (15)0.0652 (19)0.0002 (14)0.0106 (16)0.0067 (14)
O30.0709 (18)0.0426 (15)0.0583 (17)−0.0093 (14)−0.0145 (15)0.0040 (14)
N10.057 (2)0.0464 (19)0.0452 (18)0.0041 (16)−0.0044 (17)−0.0047 (16)
N20.074 (2)0.073 (2)0.051 (2)−0.011 (2)0.004 (2)0.001 (2)
N30.091 (3)0.086 (3)0.060 (2)−0.002 (2)0.016 (2)−0.015 (2)
C10.078 (3)0.059 (3)0.052 (3)0.005 (3)−0.005 (2)−0.011 (2)
C20.103 (4)0.078 (3)0.060 (3)0.020 (3)0.019 (3)−0.011 (3)
C30.131 (5)0.060 (3)0.075 (3)0.034 (3)0.003 (4)−0.015 (3)
C40.108 (4)0.051 (3)0.083 (3)0.006 (3)−0.014 (3)−0.001 (3)
C50.084 (3)0.058 (3)0.059 (3)0.010 (2)0.000 (3)0.001 (2)
C60.058 (3)0.046 (2)0.046 (2)0.009 (2)−0.009 (2)−0.008 (2)
C70.057 (2)0.045 (2)0.051 (2)0.0063 (19)−0.008 (2)−0.0040 (19)
C80.049 (2)0.0317 (18)0.049 (2)0.0025 (16)−0.0073 (19)0.0034 (18)
C90.039 (2)0.046 (2)0.044 (2)−0.0013 (18)−0.006 (2)−0.0013 (19)
C100.049 (2)0.036 (2)0.045 (2)0.0026 (18)0.0024 (19)0.0004 (18)
C110.088 (3)0.040 (2)0.084 (3)0.009 (2)0.022 (3)0.007 (2)
C120.094 (4)0.044 (3)0.104 (4)0.000 (3)0.037 (3)0.013 (3)
C130.069 (3)0.037 (2)0.091 (3)0.003 (2)−0.009 (3)−0.002 (2)
C140.063 (3)0.044 (3)0.088 (3)0.011 (2)−0.004 (3)−0.014 (2)
C150.053 (2)0.050 (2)0.061 (2)0.000 (2)0.001 (2)−0.004 (2)
C160.107 (4)0.039 (2)0.151 (5)−0.004 (3)−0.003 (4)0.013 (3)
C170.131 (5)0.053 (3)0.144 (5)−0.018 (3)−0.027 (4)0.011 (3)
C180.044 (2)0.042 (2)0.046 (2)−0.0026 (19)0.0019 (19)0.000 (2)
C190.057 (2)0.042 (2)0.039 (2)0.007 (2)0.0058 (19)0.0021 (18)
C200.084 (3)0.044 (2)0.053 (2)0.002 (2)−0.009 (2)0.001 (2)
C210.109 (4)0.037 (2)0.076 (3)0.000 (3)0.013 (3)0.003 (2)
C220.101 (4)0.056 (3)0.074 (3)0.021 (3)0.017 (3)0.027 (3)
C230.092 (4)0.085 (3)0.075 (3)0.019 (3)−0.014 (3)0.029 (3)
C240.068 (3)0.054 (2)0.054 (3)0.005 (2)−0.002 (2)0.012 (2)

Geometric parameters (Å, °)

Cl1—C241.734 (4)C10—C151.373 (5)
O1—C181.355 (4)C11—C121.394 (5)
O1—C81.448 (4)C11—H11A0.9300
O2—C91.228 (4)C12—C131.364 (6)
O3—C181.191 (4)C12—H12A0.9300
N1—N21.355 (4)C13—C141.368 (6)
N1—C61.361 (4)C13—C161.516 (5)
N1—C71.445 (4)C14—C151.378 (5)
N2—N31.312 (4)C14—H14A0.9300
N3—C11.371 (5)C15—H15A0.9300
C1—C61.380 (6)C16—C171.468 (7)
C1—C21.382 (5)C16—H16A0.9700
C2—C31.348 (6)C16—H16B0.9700
C2—H2B0.9300C17—H17A0.9600
C3—C41.385 (7)C17—H17B0.9600
C3—H3B0.9300C17—H17C0.9600
C4—C51.385 (6)C18—C191.483 (5)
C4—H4A0.9300C19—C201.379 (5)
C5—C61.383 (5)C19—C241.383 (6)
C5—H5A0.9300C20—C211.389 (5)
C7—C81.508 (5)C20—H20A0.9300
C7—H7A0.9700C21—C221.367 (7)
C7—H7B0.9700C21—H21A0.9300
C8—C91.518 (5)C22—C231.355 (6)
C8—H8A0.9800C22—H22A0.9300
C9—C101.480 (5)C23—C241.403 (6)
C10—C111.367 (5)C23—H23A0.9300
C18—O1—C8113.8 (2)C13—C12—C11121.5 (4)
N2—N1—C6110.5 (3)C13—C12—H12A119.2
N2—N1—C7119.8 (3)C11—C12—H12A119.2
C6—N1—C7129.8 (3)C12—C13—C14117.7 (4)
N3—N2—N1108.1 (3)C12—C13—C16121.0 (5)
N2—N3—C1108.3 (3)C14—C13—C16121.3 (4)
N3—C1—C6108.9 (4)C13—C14—C15121.1 (4)
N3—C1—C2130.9 (4)C13—C14—H14A119.5
C6—C1—C2120.2 (4)C15—C14—H14A119.5
C3—C2—C1118.4 (4)C10—C15—C14121.5 (4)
C3—C2—H2B120.8C10—C15—H15A119.3
C1—C2—H2B120.8C14—C15—H15A119.3
C2—C3—C4121.2 (4)C17—C16—C13116.5 (4)
C2—C3—H3B119.4C17—C16—H16A108.2
C4—C3—H3B119.4C13—C16—H16A108.2
C5—C4—C3122.1 (5)C17—C16—H16B108.2
C5—C4—H4A118.9C13—C16—H16B108.2
C3—C4—H4A118.9H16A—C16—H16B107.3
C6—C5—C4115.5 (4)C16—C17—H17A109.5
C6—C5—H5A122.3C16—C17—H17B109.5
C4—C5—H5A122.3H17A—C17—H17B109.5
N1—C6—C1104.2 (4)C16—C17—H17C109.5
N1—C6—C5133.1 (4)H17A—C17—H17C109.5
C1—C6—C5122.6 (4)H17B—C17—H17C109.5
N1—C7—C8113.0 (3)O3—C18—O1121.4 (3)
N1—C7—H7A109.0O3—C18—C19126.9 (4)
C8—C7—H7A109.0O1—C18—C19111.7 (3)
N1—C7—H7B109.0C20—C19—C24117.9 (3)
C8—C7—H7B109.0C20—C19—C18120.0 (4)
H7A—C7—H7B107.8C24—C19—C18122.1 (3)
O1—C8—C7107.0 (3)C19—C20—C21121.6 (4)
O1—C8—C9111.0 (3)C19—C20—H20A119.2
C7—C8—C9109.5 (3)C21—C20—H20A119.2
O1—C8—H8A109.8C22—C21—C20119.7 (4)
C7—C8—H8A109.8C22—C21—H21A120.1
C9—C8—H8A109.8C20—C21—H21A120.1
O2—C9—C10121.3 (3)C23—C22—C21119.9 (4)
O2—C9—C8118.4 (3)C23—C22—H22A120.0
C10—C9—C8120.1 (3)C21—C22—H22A120.0
C11—C10—C15117.8 (3)C22—C23—C24120.8 (4)
C11—C10—C9123.1 (3)C22—C23—H23A119.6
C15—C10—C9119.1 (3)C24—C23—H23A119.6
C10—C11—C12120.4 (4)C19—C24—C23120.1 (4)
C10—C11—H11A119.8C19—C24—Cl1124.3 (3)
C12—C11—H11A119.8C23—C24—Cl1115.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.513.162 (4)125
C8—H8A···O2ii0.982.423.397 (5)171
C11—H11A···O2ii0.932.563.431 (5)155

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5022).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography