PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2249.
Published online 2009 August 26. doi:  10.1107/S1600536809033315
PMCID: PMC2969878

N-(4-Chloro­phen­yl)-2-(hydroxy­imino)acetamide

Abstract

The title compound, C8H7ClN2O2, is an inter­mediate in the synthesis of 5-chloro­isatin, which can be further transformed to 5-chloro-2-indolinone via a Wolff–Kishne reduction. The C2N acetamide plane forms a dihedral angle of 6.3 (3)° with the benzene ring. An intra­molecular C—H(...)O inter­action results in the formation of a six-membered ring. In the crystal, inter­molecular N—H(...)O, N—H(...)N and O—H(...)O hydrogen bonds link the mol­ecules into multimers, forming sheets.

Related literature

For related structures, see: Miravitlles et al. (1974 [triangle]); Brianso et al. (1973 [triangle]); Liu et al. (2006 [triangle]). For the synthesis, see: Lai et al. (2003 [triangle]); Simon et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2249-scheme1.jpg

Experimental

Crystal data

  • C8H7ClN2O2
  • M r = 198.61
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2249-efi1.jpg
  • a = 10.101 (2) Å
  • b = 8.9150 (18) Å
  • c = 20.009 (4) Å
  • V = 1801.8 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.892, T max = 0.962
  • 3213 measured reflections
  • 1639 independent reflections
  • 1250 reflections with I > 2σ(I)
  • R int = 0.031
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.153
  • S = 1.00
  • 1639 reflections
  • 119 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033315/fl2255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033315/fl2255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis of Nanjing University for support.

supplementary crystallographic information

Comment

The title compound is an important intermediate in the synthesis of 5-chloro-isatin,which can be further transformed to 5-chloro-2-indolinone via a Wolff-Kishne reduction.

As part of our ongoing studies on phenyl-substituted-2-indolinone(Lai et al., 2003; Simon et al.,1997), the crystal structure of (E)—N-(2-chlorophenyl)-2-(hydroxyimino)acetamide and (E)-2-(hydroxyimino)-N-phenylacetamide have been reported(Miravitlles et al.,1974; Brianso et al.,1973; Liu et al.,2006), we report herein the crystal structure of the title compound.

In the title compound (Fig 1), the bond lengths and angles are within normal ranges. The central acetamide plane N1/C7/O1/C8 forms a dihedral angle of 6.3 (3)° with the phenyl ring. An intramolecular C—H···O interaction results in the formation of a six-membered ring. In the crystal packiing, intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into multimers (Fig. 2), ithat may be effective in the stabilization of the structure.

Experimental

85 g (0.06 mol) sodium sulfate and 300 ml water were added to a 1000 ml 3 mouthed flask, mixed until the sodium sulfate dissolved following which a saturated solution of 18 g (0.11 mol) chloral hydrate was added. While stirring, a mixture of 12.7 g(0.1 mol) p-chloroaniline, 12 ml hydrochloric acid and 100 ml water was added dropwise causing a white precipitate. Then 22 g(0.32 mol) hydroxylamine hydrochloride was added and the mixture was heated to 348k. After 5 h, a light yellow precipitate appeared which was filtered and washed with water, dried and recrystallized from ethanol (yield 90.2%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield; 90%, m.p. 443 K).

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H=0.86Å (for NH) and C—H =0.93Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O,N), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H7ClN2O2Dx = 1.464 Mg m3
Mr = 198.61Melting point: 443 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.101 (2) Åθ = 10–14°
b = 8.9150 (18) ŵ = 0.39 mm1
c = 20.009 (4) ÅT = 293 K
V = 1801.8 (6) Å3Block, yellow
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 816

Data collection

Enraf–Nonius CAD-4 diffractometer1250 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 0→12
Absorption correction: ψ scan (North et al., 1968)k = 0→10
Tmin = 0.892, Tmax = 0.962l = −24→24
3213 measured reflections3 standard reflections every 200 reflections
1639 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.153w = 1/[σ2(Fo2) + (0.1P)2 + 0.25P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1639 reflectionsΔρmax = 0.40 e Å3
119 parametersΔρmin = −0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.26935 (10)0.17533 (11)0.78148 (5)0.0896 (4)
O10.65722 (17)−0.19066 (16)0.54941 (10)0.0497 (5)
N10.62352 (19)0.0637 (2)0.55162 (10)0.0425 (5)
H1A0.64420.14420.53040.051*
C10.3696 (3)0.1410 (3)0.71252 (15)0.0565 (7)
O20.96195 (19)−0.0993 (2)0.42075 (9)0.0572 (6)
H2A1.0264−0.15460.42460.086*
N20.86646 (19)−0.1394 (2)0.46737 (10)0.0435 (5)
C20.4060 (3)0.2563 (3)0.67015 (13)0.0571 (7)
H2C0.37490.35310.67750.068*
C30.4883 (2)0.2267 (3)0.61720 (13)0.0473 (6)
H3A0.51370.30440.58890.057*
C40.5342 (2)0.0825 (2)0.60529 (12)0.0392 (6)
C50.4961 (3)−0.0326 (3)0.64785 (13)0.0572 (8)
H5A0.5260−0.12980.64050.069*
C60.4138 (3)−0.0022 (3)0.70111 (15)0.0610 (8)
H6A0.3881−0.07940.72950.073*
C70.6807 (2)−0.0630 (2)0.52908 (12)0.0393 (6)
C80.7835 (2)−0.0349 (3)0.47759 (12)0.0415 (6)
H8A0.78700.05490.45400.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0956 (7)0.0920 (7)0.0814 (6)0.0178 (5)0.0434 (5)0.0147 (5)
O10.0536 (11)0.0290 (9)0.0667 (11)−0.0014 (7)0.0034 (9)0.0062 (8)
N10.0494 (11)0.0265 (9)0.0518 (12)−0.0012 (8)0.0038 (10)0.0060 (8)
C10.0499 (15)0.0637 (17)0.0559 (16)0.0043 (13)0.0082 (12)0.0062 (13)
O20.0517 (11)0.0475 (10)0.0725 (13)0.0092 (9)0.0147 (10)0.0054 (9)
N20.0431 (11)0.0347 (10)0.0526 (12)−0.0002 (9)0.0000 (9)0.0023 (9)
C20.0609 (17)0.0482 (14)0.0621 (17)0.0131 (13)0.0106 (14)0.0045 (13)
C30.0477 (14)0.0404 (13)0.0538 (14)0.0021 (11)0.0040 (12)0.0088 (11)
C40.0387 (12)0.0340 (12)0.0449 (12)−0.0032 (10)−0.0013 (10)0.0016 (10)
C50.0754 (19)0.0340 (13)0.0621 (16)−0.0052 (13)0.0115 (15)0.0025 (12)
C60.0713 (19)0.0507 (15)0.0611 (16)−0.0100 (14)0.0161 (14)0.0107 (14)
C70.0394 (12)0.0311 (11)0.0472 (13)0.0000 (10)−0.0072 (11)0.0024 (9)
C80.0453 (13)0.0303 (11)0.0491 (13)0.0018 (10)−0.0003 (10)0.0048 (10)

Geometric parameters (Å, °)

Cl—C11.739 (3)C2—C31.373 (3)
O1—C71.232 (3)C2—H2C0.9300
N1—C71.346 (3)C3—C41.387 (3)
N1—C41.412 (3)C3—H3A0.9300
N1—H1A0.8600C4—C51.388 (3)
C1—C61.371 (4)C5—C61.378 (4)
C1—C21.382 (4)C5—H5A0.9300
O2—N21.389 (3)C6—H6A0.9300
O2—H2A0.8200C7—C81.484 (3)
N2—C81.270 (3)C8—H8A0.9300
C7—N1—C4128.95 (19)C3—C4—N1117.01 (19)
C7—N1—H1A115.5C5—C4—N1123.8 (2)
C4—N1—H1A115.5C6—C5—C4119.8 (2)
C6—C1—C2120.2 (3)C6—C5—H5A120.1
C6—C1—Cl119.1 (2)C4—C5—H5A120.1
C2—C1—Cl120.7 (2)C1—C6—C5120.5 (2)
N2—O2—H2A109.5C1—C6—H6A119.7
C8—N2—O2112.20 (19)C5—C6—H6A119.7
C3—C2—C1119.5 (3)O1—C7—N1125.6 (2)
C3—C2—H2C120.3O1—C7—C8121.3 (2)
C1—C2—H2C120.3N1—C7—C8113.04 (19)
C2—C3—C4120.9 (2)N2—C8—C7116.7 (2)
C2—C3—H3A119.6N2—C8—H8A121.6
C4—C3—H3A119.6C7—C8—H8A121.6
C3—C4—C5119.1 (2)
C6—C1—C2—C3−1.0 (4)C2—C1—C6—C50.8 (5)
Cl—C1—C2—C3178.1 (2)Cl—C1—C6—C5−178.4 (2)
C1—C2—C3—C40.7 (4)C4—C5—C6—C1−0.2 (4)
C2—C3—C4—C5−0.2 (4)C4—N1—C7—O15.3 (4)
C2—C3—C4—N1−177.1 (2)C4—N1—C7—C8−171.9 (2)
C7—N1—C4—C3−179.0 (2)O2—N2—C8—C7−177.10 (19)
C7—N1—C4—C54.3 (4)O1—C7—C8—N2−16.5 (3)
C3—C4—C5—C6−0.1 (4)N1—C7—C8—N2160.9 (2)
N1—C4—C5—C6176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.523.115 (3)127
N1—H1A···N2i0.862.313.140 (3)163
O2—H2A···O1ii0.821.982.785 (3)167
C5—H5A···O10.932.322.918 (3)122

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x+1/2, −y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2255).

References

  • Brianso, J. L., Miravitlles, C., Font-Altaba, M., Declercq, J. P. & Germain, G. (1973). Cryst. Struct. Commun.2, 319–321.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Lai, Y., Zhang, Y. & Li, Y. (2003). Zhongguo Yaowu Huaxue Zazhi, 13, 99–101.
  • Liu, S., Ma, M., Zhou, H., Li, Y. & Han, L. (2006). Acta Cryst. E62, o316–o317.
  • Miravitlles, C., Plana, F., Brianso, J. L. & Font-Altaba, M. (1974). Cryst. Struct. Commun.3, 439–442.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simon, J. G., Jose, C. T., Alexandre, A. F., Rosangela, B. S. & Angelo, C. P. (1997). Tetrahedron Lett.38, 1501–1504.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography