PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2177.
Published online 2009 August 19. doi:  10.1107/S1600536809031584
PMCID: PMC2969867

1-Benzyl-3-phenyl­imidazolium hexa­fluoro­phosphate

Abstract

in the title compound, C16H15N2 +·PF6 , a precursor of N-heterocyclic carbene, the phenyl and benzyl rings are twisted away from the central imidazolium ring system, making dihedral angles of 70.30 (8) and 32.03 (10)°, respectively. The crystal structure is stabilized by C—H(...)F hydrogen bonds. Furthermore, P—F(...)π inter­actions involving imidazolium rings are observed [F(...)π = 2.9857 (16), P(...)π = 4.1630 (16) Å, P—F(...)π = 127.92 (6)°].

Related literature

The first stable N-heterocyclic carbene was isolated by Arduengo et al. (1991 [triangle]). For the synthesis, see: Liu et al. (2003 [triangle]). For related structures, see: Wan et al. (2008 [triangle]). For related structures, see: Newman et al. (2007 [triangle]); Herrmann (2002 [triangle]); Yang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2177-scheme1.jpg

Experimental

Crystal data

  • C16H15N2 +·PF6
  • M r = 380.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2177-efi1.jpg
  • a = 9.221 (2) Å
  • b = 10.046 (3) Å
  • c = 10.108 (2) Å
  • α = 110.733 (2)°
  • β = 91.969 (2)°
  • γ = 110.315 (2)°
  • V = 807.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 93 K
  • 0.43 × 0.40 × 0.37 mm

Data collection

  • Rigaku SPIDER diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.905, T max = 0.919
  • 4739 measured reflections
  • 2902 independent reflections
  • 2361 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.084
  • S = 1.00
  • 2902 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: RAPID-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031584/at2854sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031584/at2854Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Fund Projects of Sichuan Educational department (grant No. 2005 A104).

supplementary crystallographic information

Comment

Initiated by the isolation of the first stable N-heterocyclic carbene (NHC) by Arduengo et al. (1991), numerous stable NHC ligands has been prepared. 1,3-Disubstitutedimidazolium salts are considerable good precursor for synthesis of transition metal NHCs. In addition, the study of biological activities of imidazolium salts have been reported during these years. We report herein the synthesis and crystal structure of the title compound (I).

In (I), bond lengths and angles in title molecule (Fig. 1) are normal. The phenyl ring make dihedral angles with the benzyl ring and the imidazolium ring of 70.30 (8)° and 32.03 (10)°, respectively.

The crystal structure is stabilized by C—H···F hydrogen bonds (Table 1). Furthermore, P—F···π interactions involving imidazolium rings [F1···Cg1iv = 2.9857 (16) Å, P1···Cg1iv = 4.1630 (16) Å, P1—F1··· Cg1iv = 127.92 (6)°, where Cg1 is a centroid of the N1/N2/C7–C9 ring; symmetry code: (iv) -x+2, -y+1, -z+1] are observed.

Experimental

The title compound was prepared according to the reported procedure of Liu et al. (2003). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from dichloromethane and pPetroleum ether.

Refinement

H atoms were placed in calculated positions with C—H = 0.95–0.9900 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Crystal data

C16H15N2+·PF6Z = 2
Mr = 380.27F(000) = 388
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.221 (2) ÅCell parameters from 2516 reflections
b = 10.046 (3) Åθ = 3.1–27.5°
c = 10.108 (2) ŵ = 0.24 mm1
α = 110.733 (2)°T = 93 K
β = 91.969 (2)°Block, colourless
γ = 110.315 (2)°0.43 × 0.40 × 0.37 mm
V = 807.9 (3) Å3

Data collection

Rigaku SPIDER diffractometer2902 independent reflections
Radiation source: Rotating Anode2361 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→7
Tmin = 0.905, Tmax = 0.919k = −11→12
4739 measured reflectionsl = −12→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.043P)2 + 0.066P] where P = (Fo2 + 2Fc2)/3
2902 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P11.23197 (5)1.00569 (5)0.79232 (5)0.02127 (14)
F11.38948 (11)1.06413 (12)0.73171 (11)0.0297 (3)
F21.07593 (13)0.94747 (15)0.85307 (13)0.0444 (3)
F31.16399 (13)1.10464 (14)0.73467 (12)0.0380 (3)
F41.30246 (13)0.90834 (14)0.85235 (12)0.0381 (3)
F51.30920 (14)1.15038 (13)0.94289 (11)0.0427 (3)
F61.15883 (14)0.86186 (13)0.64242 (12)0.0433 (3)
N10.47043 (15)0.20046 (16)0.35708 (14)0.0188 (3)
N20.28468 (15)−0.02584 (16)0.25378 (14)0.0192 (3)
C10.5504 (2)0.4242 (2)0.29382 (18)0.0235 (4)
H10.45930.37400.22110.028*
C20.6550 (2)0.5713 (2)0.31694 (19)0.0255 (4)
H20.63670.62160.25810.031*
C30.7858 (2)0.6454 (2)0.42503 (18)0.0241 (4)
H30.85530.74750.44220.029*
C40.8153 (2)0.5709 (2)0.50786 (19)0.0270 (4)
H40.90610.62130.58100.032*
C50.7131 (2)0.4229 (2)0.48495 (19)0.0243 (4)
H50.73370.37140.54160.029*
C60.58132 (19)0.3514 (2)0.37897 (18)0.0191 (4)
C70.4319 (2)0.1417 (2)0.46130 (18)0.0218 (4)
H70.47870.19120.56020.026*
C80.3160 (2)0.0014 (2)0.39716 (18)0.0223 (4)
H80.2652−0.06620.44230.027*
C90.37939 (19)0.0950 (2)0.23205 (18)0.0194 (4)
H90.38220.10510.14210.023*
C100.1627 (2)−0.1631 (2)0.14214 (19)0.0233 (4)
H10A0.1772−0.15950.04670.028*
H10B0.0580−0.16120.15810.028*
C110.16757 (19)−0.3114 (2)0.14213 (17)0.0197 (4)
C120.28553 (19)−0.3616 (2)0.08983 (18)0.0224 (4)
H120.3691−0.29830.05980.027*
C130.2811 (2)−0.5030 (2)0.08160 (18)0.0254 (4)
H130.3614−0.53680.04530.030*
C140.1600 (2)−0.5965 (2)0.12598 (18)0.0255 (4)
H140.1569−0.69410.11950.031*
C150.0439 (2)−0.5460 (2)0.17967 (18)0.0248 (4)
H15−0.0385−0.60870.21130.030*
C160.04776 (19)−0.4049 (2)0.18733 (17)0.0219 (4)
H16−0.0325−0.37130.22400.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0232 (3)0.0215 (3)0.0217 (3)0.0089 (2)0.0073 (2)0.0108 (2)
F10.0233 (5)0.0358 (7)0.0297 (6)0.0075 (5)0.0084 (5)0.0159 (5)
F20.0366 (7)0.0571 (9)0.0629 (8)0.0237 (6)0.0301 (6)0.0422 (7)
F30.0390 (7)0.0481 (8)0.0470 (7)0.0250 (6)0.0148 (6)0.0323 (7)
F40.0498 (7)0.0469 (8)0.0437 (7)0.0330 (6)0.0230 (6)0.0315 (6)
F50.0644 (8)0.0339 (7)0.0229 (6)0.0196 (6)0.0073 (6)0.0029 (6)
F60.0445 (7)0.0274 (7)0.0348 (7)−0.0020 (6)−0.0008 (5)0.0025 (6)
N10.0206 (7)0.0181 (8)0.0174 (8)0.0075 (6)0.0029 (6)0.0066 (7)
N20.0197 (7)0.0187 (8)0.0184 (8)0.0076 (6)0.0021 (6)0.0063 (7)
C10.0236 (9)0.0251 (10)0.0214 (10)0.0088 (8)0.0026 (8)0.0094 (8)
C20.0305 (10)0.0247 (10)0.0259 (10)0.0122 (8)0.0077 (8)0.0134 (9)
C30.0251 (9)0.0209 (10)0.0239 (10)0.0065 (8)0.0083 (8)0.0081 (8)
C40.0244 (9)0.0275 (11)0.0228 (10)0.0061 (8)−0.0002 (8)0.0070 (9)
C50.0264 (9)0.0238 (10)0.0227 (10)0.0086 (8)0.0015 (8)0.0103 (9)
C60.0211 (9)0.0178 (9)0.0177 (9)0.0081 (7)0.0058 (7)0.0053 (8)
C70.0308 (10)0.0232 (10)0.0148 (9)0.0128 (8)0.0059 (7)0.0086 (8)
C80.0292 (10)0.0234 (10)0.0174 (9)0.0121 (8)0.0070 (8)0.0093 (8)
C90.0203 (8)0.0216 (10)0.0164 (9)0.0088 (7)0.0023 (7)0.0068 (8)
C100.0210 (9)0.0238 (10)0.0216 (10)0.0059 (8)−0.0007 (7)0.0078 (8)
C110.0202 (8)0.0204 (10)0.0146 (9)0.0059 (7)−0.0017 (7)0.0049 (8)
C120.0187 (9)0.0248 (10)0.0218 (10)0.0060 (8)0.0038 (7)0.0092 (8)
C130.0233 (9)0.0292 (11)0.0229 (10)0.0120 (8)−0.0007 (8)0.0079 (9)
C140.0293 (10)0.0209 (10)0.0218 (10)0.0065 (8)−0.0052 (8)0.0073 (8)
C150.0225 (9)0.0265 (11)0.0205 (10)0.0019 (8)−0.0006 (8)0.0116 (9)
C160.0200 (9)0.0264 (10)0.0147 (9)0.0063 (8)0.0007 (7)0.0057 (8)

Geometric parameters (Å, °)

P1—F21.5875 (11)C5—C61.378 (2)
P1—F31.5933 (11)C5—H50.9500
P1—F61.5942 (12)C7—C81.345 (2)
P1—F11.5978 (11)C7—H70.9500
P1—F51.6052 (12)C8—H80.9500
P1—F41.6066 (11)C9—H90.9500
N1—C91.336 (2)C10—C111.505 (2)
N1—C71.380 (2)C10—H10A0.9900
N1—C61.437 (2)C10—H10B0.9900
N2—C91.323 (2)C11—C161.389 (2)
N2—C81.376 (2)C11—C121.396 (2)
N2—C101.474 (2)C12—C131.379 (2)
C1—C21.385 (2)C12—H120.9500
C1—C61.389 (2)C13—C141.391 (2)
C1—H10.9500C13—H130.9500
C2—C31.383 (2)C14—C151.386 (2)
C2—H20.9500C14—H140.9500
C3—C41.380 (2)C15—C161.380 (2)
C3—H30.9500C15—H150.9500
C4—C51.386 (2)C16—H160.9500
C4—H40.9500
F2—P1—F390.46 (6)C5—C6—C1121.20 (17)
F2—P1—F690.77 (7)C5—C6—N1120.21 (15)
F3—P1—F690.53 (7)C1—C6—N1118.58 (15)
F2—P1—F1179.73 (6)C8—C7—N1107.46 (15)
F3—P1—F189.79 (6)C8—C7—H7126.3
F6—P1—F189.34 (6)N1—C7—H7126.3
F2—P1—F590.23 (7)C7—C8—N2107.13 (15)
F3—P1—F590.14 (7)C7—C8—H8126.4
F6—P1—F5178.80 (7)N2—C8—H8126.4
F1—P1—F589.66 (6)N2—C9—N1108.96 (14)
F2—P1—F489.83 (6)N2—C9—H9125.5
F3—P1—F4179.11 (7)N1—C9—H9125.5
F6—P1—F490.31 (7)N2—C10—C11112.54 (14)
F1—P1—F489.92 (6)N2—C10—H10A109.1
F5—P1—F489.02 (7)C11—C10—H10A109.1
C9—N1—C7107.81 (14)N2—C10—H10B109.1
C9—N1—C6125.48 (14)C11—C10—H10B109.1
C7—N1—C6126.60 (15)H10A—C10—H10B107.8
C9—N2—C8108.63 (14)C16—C11—C12118.95 (16)
C9—N2—C10124.79 (14)C16—C11—C10119.61 (15)
C8—N2—C10126.53 (14)C12—C11—C10121.34 (15)
C2—C1—C6118.79 (17)C13—C12—C11120.18 (16)
C2—C1—H1120.6C13—C12—H12119.9
C6—C1—H1120.6C11—C12—H12119.9
C3—C2—C1120.50 (17)C12—C13—C14120.50 (17)
C3—C2—H2119.8C12—C13—H13119.8
C1—C2—H2119.8C14—C13—H13119.8
C4—C3—C2119.89 (17)C15—C14—C13119.44 (17)
C4—C3—H3120.1C15—C14—H14120.3
C2—C3—H3120.1C13—C14—H14120.3
C3—C4—C5120.38 (17)C16—C15—C14120.11 (16)
C3—C4—H4119.8C16—C15—H15119.9
C5—C4—H4119.8C14—C15—H15119.9
C6—C5—C4119.21 (17)C15—C16—C11120.81 (16)
C6—C5—H5120.4C15—C16—H16119.6
C4—C5—H5120.4C11—C16—H16119.6
C6—C1—C2—C3−1.4 (3)C8—N2—C9—N1−0.49 (18)
C1—C2—C3—C41.9 (3)C10—N2—C9—N1177.44 (14)
C2—C3—C4—C5−1.0 (3)C7—N1—C9—N20.77 (18)
C3—C4—C5—C6−0.3 (3)C6—N1—C9—N2−175.77 (14)
C4—C5—C6—C10.8 (3)C9—N2—C10—C11132.27 (16)
C4—C5—C6—N1−177.50 (15)C8—N2—C10—C11−50.2 (2)
C2—C1—C6—C50.0 (3)N2—C10—C11—C16109.96 (17)
C2—C1—C6—N1178.40 (15)N2—C10—C11—C12−73.7 (2)
C9—N1—C6—C5−151.02 (16)C16—C11—C12—C130.9 (2)
C7—N1—C6—C533.1 (2)C10—C11—C12—C13−175.41 (16)
C9—N1—C6—C130.6 (2)C11—C12—C13—C14−0.4 (3)
C7—N1—C6—C1−145.30 (16)C12—C13—C14—C15−0.4 (3)
C9—N1—C7—C8−0.76 (18)C13—C14—C15—C160.7 (2)
C6—N1—C7—C8175.73 (15)C14—C15—C16—C11−0.2 (2)
N1—C7—C8—N20.46 (18)C12—C11—C16—C15−0.6 (2)
C9—N2—C8—C70.01 (18)C10—C11—C16—C15175.78 (15)
C10—N2—C8—C7−177.88 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···F1i0.952.503.099 (2)121
C8—H8···F6i0.952.503.392 (2)156
C9—H9···F5ii0.952.343.247 (2)159
C10—H10A···F4ii0.992.493.444 (2)161
C10—H10B···F3iii0.992.493.455 (3)164

Symmetry codes: (i) x−1, y−1, z; (ii) x−1, y−1, z−1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2854).

References

  • Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc.113, 361–363.
  • Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, J. P., Chen, J. B., Zhao, J. F., Zhao, Y. H., li, L. & Zhang, H. B. (2003). Synthesis, pp. 2661–2666.
  • Newman, C. P., Clarkson, G. J. & Rourke, J. P. (2007). J. Organomet. Chem.692, 4962–4968.
  • Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wan, Y., Xin, H., Chen, X., Xu, H. & Wu, H. (2008). Acta Cryst. E64, o2159. [PMC free article] [PubMed]
  • Yang, X. D., Zeng, X. H., Zhang, Y. L., Qing, C., Song, W. J., Li, L. & Zhang, H. B. (2009). Bioorg. Med. Chem. Lett.19, 1892–1895. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography